SP7: from Bone Development to Skeletal Disease

Berendsen AD, Olsen BR. Bone development. Bone. 2015;80:14–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chan WCW, Tan Z, To MKT, Chan D. Regulation and role of transcription factors in osteogenesis. Int J Mol Sci. 2021;22:5445.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, et al. The human transcription factors. Cell. 2018;172:650–65.

Article  CAS  PubMed  Google Scholar 

Mitsis T, Efthimiadou A, Bacopoulou F, Vlachakis D, Chrousos G, Eliopoulos E. Transcription factors and evolution: an integral part of gene expression (review). World Acad Sci J. 2020;2:3–8.

Long F, Ornitz DM. Development of the endochondral skeleton. Csh Perspect Biol. 2013;5:a008334.

Google Scholar 

Rolph D, Das H. Transcriptional regulation of osteoclastogenesis: the emerging role of KLF2. Front Immunol. 2020;11:937.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bi W, Deng JM, Zhang Z, Behringer RR, de Crombrugghe B. Sox9 is required for cartilage formation. Nat Genet. 1999;22:85–9.

Article  CAS  PubMed  Google Scholar 

Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997;89:755–64.

Article  CAS  PubMed  Google Scholar 

Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 2002;108:17–29.

Article  CAS  PubMed  Google Scholar 

Franzoso G, Carlson L, Xing L, Poljak L, Shores EW, Brown KD, et al. Requirement for NF-κB in osteoclast and B-cell development. Gene Dev. 1997;11:3482–96.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang X, Matsuda K, Bialek P, Jacquot S, Masuoka HC, Schinke T, et al. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology implication for Coffin-Lowry syndrome. Cell. 2004;117:387–98.

Article  CAS  PubMed  Google Scholar 

Lu S-Y, Li M, Lin Y-L. Mitf induction by RANKL is critical for osteoclastogenesis. Mol Biol Cell. 2010;21:1763–71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell. 2002;3:889–901.

Article  CAS  PubMed  Google Scholar 

Philipsen S, Suske G. A tale of three fingers: the family of mammalian Sp/XKLF transcription factors. Nucleic Acids Res. 1999;27:2991–3000.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao Y, Jheon A, Nourkeyhani H, Kobayashi H, Ganss B. Molecular cloning, structure, expression, and chromosomal localization of the human Osterix (SP7) gene. Gene. 2004;341:101–10.

Article  CAS  PubMed  Google Scholar 

Nakashima K, de Crombrugghe B. Transcriptional mechanisms in osteoblast differentiation and bone formation. Trends Genet. 2003;19:458–66.

Article  CAS  PubMed  Google Scholar 

Xing W, Godwin C, Pourteymoor S, Mohan S. Conditional disruption of the osterix gene in chondrocytes during early postnatal growth impairs secondary ossification in the mouse tibial epiphysis. Bone Res. 2019;7:24.

Article  PubMed  PubMed Central  Google Scholar 

Wang JS, Kamath T, Mazur CM, Mirzamohammadi F, Rotter D, Hojo H, et al. Control of osteocyte dendrite formation by Sp7 and its target gene osteocrin. Nat Commun. 2021;12:6271.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hojo H, Ohba S. Sp7 Action in the skeleton: its mode of action, functions, and relevance to skeletal diseases. Int J Mol Sci. 2022;23:5647.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Park J-S, Park G-I, Kim J-E. Osterix is dispensable for the development of the mouse olfactory bulb. Biochem Bioph Res Co. 2016;478:110–5.

Article  CAS  Google Scholar 

Aguilar R, Bustos FJ, Nardocci G, Zundert B, Montecino M. Epigenetic silencing of the osteoblast-lineage gene program during hippocampal maturation. J Cell Biochem. 2021;122:367–84.

Article  CAS  PubMed  Google Scholar 

Mullen RD, Wang Y, Liu B, Moore EL, Behringer RR. Osterix functions downstream of anti-Müllerian hormone signaling to regulate Müllerian duct regression. Proc National Acad Sci. 2018;115:8382–7.

Article  Google Scholar 

Zhou X, Zhang Z, Feng JQ, Dusevich VM, Sinha K, Zhang H, et al. Multiple functions of Osterix are required for bone growth and homeostasis in postnatal mice. Proc National Acad Sci. 2010;107:12919–24.

Article  CAS  Google Scholar 

Baek W, Lee M, Jung JW, Kim S, Akiyama H, de Crombrugghe B, et al. Positive regulation of adult bone formation by osteoblast-specific transcription factor osterix. J Bone Miner Res. 2009;24:1055–65.

Article  CAS  PubMed  Google Scholar 

Baek W-Y, de Crombrugghe B, Kim J-E. Postnatally induced inactivation of osterix in osteoblasts results in the reduction of bone formation and maintenance. Bone. 2010;46:920–8.

Article  CAS  PubMed  Google Scholar 

Ortuño MJ, Susperregui ARG, Artigas N, Rosa JL, Ventura F. Osterix induces Col1a1 gene expression through binding to Sp1 sites in the bone enhancer and proximal promoter regions. Bone. 2013;52:548–56.

Article  PubMed  Google Scholar 

Yang Y, Huang Y, Zhang L, Zhang C. Transcriptional regulation of bone sialoprotein gene expression by Osx. Biochem Bioph Res Co. 2016;476:574–9.

Article  CAS  Google Scholar 

Yang F, Tang W, So S, de Crombrugghe B, Zhang C. Sclerostin is a direct target of osteoblast-specific transcription factor osterix. Biochem Bioph Res Co. 2010;400:684–8.

Article  CAS  Google Scholar 

Yano H, Hamanaka R, Nakamura-Ota M, Adachi S, Zhang JJ, Matsuo N, et al. Sp7/Osterix induces the mouse pro-α2(I) collagen gene (Col1a2) expression via the proximal promoter in osteoblastic cells. Biochem Bioph Res Co. 2014;452:531–6.

Article  CAS  Google Scholar 

Zhang C, Tang W, Li Y. Matrix metalloproteinase 13 (MMP13) is a direct target of osteoblast-specific transcription factor osterix (Osx) in osteoblasts. Plos One. 2012;7:e50525.

Article  CAS  PubMed  PubMed Central  Google Scholar 

China GPKL of O and TRI The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, Gao M, Su Q, Liang T, Ma J, Stoddart M, et al. Transcriptional activation of ENPP1 by osterix in osteoblasts and osteocytes. Eur Cells Mater. 2018;36:1–14.

Article  Google Scholar 

Kawane T, Komori H, Liu W, Moriishi T, Miyazaki T, Mori M, et al. Dlx5 and Mef2 regulate a novel Runx2 enhancer for osteoblast-specific expression. J Bone Miner Res. 2014;29:1960–9.

Article  CAS  PubMed  Google Scholar 

Hojo H, Ohba S, He X, Lai LP, McMahon AP. Sp7/osterix is restricted to bone-forming vertebrates where it acts as a Dlx co-factor in osteoblast specification. Dev Cell. 2016;37:238–53.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koga T, Matsui Y, Asagiri M, Kodama T, de Crombrugghe B, Nakashima K, et al. NFAT and Osterix cooperatively regulate bone formation. Nat Med. 2005;11:880–5.

Article  CAS  PubMed  Google Scholar 

Franz-Odendaal TA, Hall BK, Witten PE. Buried alive: how osteoblasts become osteocytes. Dev Dynam. 2005;235:176–90.

Article  Google Scholar 

Lu Y, Xie Y, Zhang S, Dusevich V, Bonewald LF, Feng JQ. DMP1-targeted cre expression in odontoblasts and osteocytes. J Dent Res. 2007;86:320–5.

Article  CAS  PubMed  Google Scholar 

Moriishi T, Ito T, Fukuyama R, Qin X, Komori H, Kaneko H, et al. Sp7 transgenic mice with a markedly impaired lacunocanalicular network induced sost and reduced bone mass by unloading. Int J Mol Sci. 2022;23:3173. A novel study reported that overexpression of Sp7 in vivo impaired the lacunar-canalicular network and failed to restore bone formation during unloading. It demonstrated the importance of proper Sp7 expression level in osteocytes.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McNamara LM, Majeska RJ, Weinbaum S, Friedrich V, Schaffler MB. Attachment of osteocyte cell processes to the bone matrix. Anatomical Rec. 2009;292:355–63.

Article  CAS  Google Scholar 

Thi MM, Suadicani SO, Schaffler MB, Weinbaum S, Spray DC. Mechanosensory responses of osteocytes to physiological forces occur along processes and not cell body and require αVβ3 integrin. Proc National Acad Sci. 2013;110:21012–7.

留言 (0)

沒有登入
gif