Extracellular Vesicles and Exosomes in the Control of the Musculoskeletal Health

Li SR, Man QW, Gao X, Lin H, Wang J, Su FC, et al. Tissue-derived extracellular vesicles in cancers and non-cancer diseases: present and future. J Extracell Ves. 2021;10:e12175.

Article  CAS  Google Scholar 

Hu C, Jiang W, Lv M, Fan S, Lu Y, Wu Q, et al. Potentiality of exosomal proteins as novel cancer biomarkers for liquid biopsy. Front Immunol. 2022;13:792046.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Colao IL, Corteling R, Bracewell D, Wall I. Manufacturing exosomes: a promising therapeutic platform. Trends Mol Med. 2018;24:242–56.

Article  CAS  PubMed  Google Scholar 

Cento AS, Leigheb M, Caretti G, Penna F. Exercise and exercise mimetics for the treatment of musculoskeletal disorders. Curr Osteoporos Rep. 2022;20:249–59.

Article  PubMed  PubMed Central  Google Scholar 

Sheng R, Cao M, Song M, Wang M, Zhang Y, Shi L, et al. Muscle-bone crosstalk via endocrine signals and potential targets for osteosarcopenia-related fracture. J Orthopaed Trans. 2023;43:36–46.

Article  Google Scholar 

Schroder EA, Harfmann BD, Zhang X, Srikuea R, England JH, Hodge BA, et al. Intrinsic muscle clock is necessary for musculoskeletal health. J Physiol. 2015;593:5387–404.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alt EU, Senst C, Murthy SN, Slakey DP, Dupin CL, Chaffin AE, et al. Aging alters tissue resident mesenchymal stem cell properties. Stem Cell Res. 2012;8:215–25.

Article  CAS  PubMed  Google Scholar 

Roman W, Muñoz-Cánoves P. Muscle is a stage, and cells and factors are merely players. Trends Cell Biol. 2022;32:835–40.

Article  CAS  PubMed  Google Scholar 

James SL, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet (London, England). 2018;392:1789–858.

Article  Google Scholar 

Williams A, Kamper SJ, Wiggers JH, O’Brien KM, Lee H, Wolfenden L, et al. Musculoskeletal conditions may increase the risk of chronic disease: a systematic review and meta-analysis of cohort studies. BMC Medicine. 2018;16:167.

Article  PubMed  PubMed Central  Google Scholar 

Montero-Odasso M, Van Der Velde N, Martin FC, Petrovic M, Tan MP, Ryg J, et al. World guidelines for falls prevention and management for older adults: a global initiative. Age Ageing. 2022;51:afac205.

Article  PubMed  PubMed Central  Google Scholar 

Rizzoli R, Biver E, Brennan-Speranza TC. Nutritional intake and bone health. Lancet Diabetes Endocrinol. 2021;9:606–21.

Article  CAS  PubMed  Google Scholar 

Hoffmann I, Kohl M, von Stengel S, Jakob F, Kerschan-Schindl K, Lange U, et al. Exercise and the prevention of major osteoporotic fractures in adults: a systematic review and meta-analysis with special emphasis on intensity progression and study duration. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2023;34:15–28.

Article  PubMed  Google Scholar 

Uenaka M, Yamashita E, Kikuta J, Morimoto A, Ao T, Mizuno H, et al. Osteoblast-derived vesicles induce a switch from bone-formation to bone-resorption in vivo. Nat Commun. 2022;13:1066.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Davis HM, Deosthale PJ, Pacheco-Costa R, Essex AL, Atkinson EG, Aref MW, et al. Osteocytic miR21 deficiency improves bone strength independent of sex despite having sex divergent effects on osteocyte viability and bone turnover. FEBS J [Internet]. 2020 [cited 2024 Feb 16];287:941–63. Available from: https://pubmed.ncbi.nlm.nih.gov/31532878/

Essex AL, Deosthale P, Huot JR, Davis HM, Momeni N, Bonetto A, et al. miR21 deletion in osteocytes has direct and indirect effects on skeletal muscle in a sex-dimorphic manner in mice. Biol Sex Differ [Internet]. 2022 [cited 2024 Feb 16];13. Available from: https://pubmed.ncbi.nlm.nih.gov/36183096/

Sun W, Zhao C, Li Y, Wang L, Nie G, Peng J, et al. Osteoclast-derived microRNA-containing exosomes selectively inhibit osteoblast activity. Cell Discov. 2016;2:16015.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li D, Liu J, Guo B, Liang C, Dang L, Lu C, et al. Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation. Nat Commun. 2016;7:10872.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Sato M, Suzuki T, Kawano M, Tamura M. Circulating osteocyte-derived exosomes contain miRNAs which are enriched in exosomes from MLO-Y4 cells. Biomed Rep. 2017;6:223–31.

Article  CAS  PubMed  Google Scholar 

Cui Y, Luan J, Li H, Zhou X, Han J. Exosomes derived from mineralizing osteoblasts promote ST2 cell osteogenic differentiation by alteration of microRNA expression. FEBS Letters. 2016;590:185–92.

Article  CAS  PubMed  Google Scholar 

Ansari S, de Wildt BWM, Vis MAM, de Korte CE, Ito K, Hofmann S, et al. Matrix vesicles: role in bone mineralization and potential use as therapeutics. Pharmaceuticals (Basel, Switzerland). 2021;14:289.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Minamizaki T, Nakao Y, Irie Y, Ahmed F, Itoh S, Sarmin N, et al. The matrix vesicle cargo miR-125b accumulates in the bone matrix, inhibiting bone resorption in mice. Commun Biol. 2020;3:30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qin Y, Peng Y, Zhao W, Pan J, Ksiezak-Reding H, Cardozo C, et al. Myostatin inhibits osteoblastic differentiation by suppressing osteocyte-derived exosomal microRNA-218: a novel mechanism in muscle-bone communication. J Biol Chem. 2017;292:11021–33.

Article  CAS  PubMed  PubMed Central  Google Scholar 

He WA, Calore F, Londhe P, Canella A, Guttridge DC, Croce CM. Microvesicles containing miRNAs promote muscle cell death in cancer cachexia via TLR7. Proc Nat Acad Sci United States of Am. 2014;111:4525–9.

Article  ADS  CAS  Google Scholar 

Penna F, Costamagna D, Fanzani A, Bonelli G, Baccino FM, Costelli P. Muscle wasting and impaired Myogenesis in tumor bearing mice are prevented by ERK inhibition. PLoS ONE. 2010;5:13604.

Article  ADS  Google Scholar 

He WA, Berardi E, Cardillo VM, Acharyya S, Aulino P, Thomas-Ahner J, et al. NF-κB-mediated Pax7 dysregulation in the muscle microenvironment promotes cancer cachexia. J Clin Invest. 2013;123:4821–35.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brzeszczyńska J, Johns N, Schilb A, Degen S, Degen M, Langen R, et al. Loss of oxidative defense and potential blockade of satellite cell maturation in the skeletal muscle of patients with cancer but not in the healthy elderly. Aging. 2016;8:1690–702.

Article  PubMed  PubMed Central  Google Scholar 

Pin F, Beltrà M, Garcia-Castillo L, Pardini B, Birolo G, Matullo G, et al. Extracellular vesicles derived from tumour cells as a trigger of energy crisis in the skeletal muscle. J Cachexia, Sarcopenia Muscle. 2022;13:481–94.

Article  PubMed  Google Scholar 

Chunxiao M, Zhang W, Feng L, Gu X, Shen Q, Lu S, et al. Cancer-derived exosome miRNAs induce skeletal muscle wasting by Bcl-2-mediated apoptosis in colon cancer cachexia. Mol Ther Nucleic Acids. 2021;24:923–38.

Article  Google Scholar 

Qiu L, Chen W, Wu C, Yuan Y, Li Y. Exosomes of oral squamous cell carcinoma cells containing miR-181a-3p induce muscle cell atrophy and apoptosis by transmissible endoplasmic reticulum stress signaling. Biochem Biophys Res Commun. 2020;533:831–7.

Article  CAS  PubMed  Google Scholar 

Yan W, Cao M, Ruan X, Jiang L, Lee S, Lemanek A, et al. Cancer-cell-secreted miR-122 suppresses O-GlcNAcylation to promote skeletal muscle proteolysis. Nat Cell Biol. 2022;24:793–804.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Costelli P, Reffo P, Penna F, Autelli R, Bonelli G, Baccino FM. Ca2+-dependent proteolysis in muscle wasting. Int J Biochem Cell Biol. 2005;37:2134–46.

Article  CAS  PubMed  Google Scholar 

Holliday LS, Patel SS, Rody WJ. RANKL and RANK in extracellular vesicles: surprising new players in bone remodeling. Extracell Ves Circulat Nucl Acids. 2021;2:18–28.

CAS  Google Scholar 

Cappariello A, Loftus A, Muraca M, Maurizi A, Rucci N, Teti A. Osteoblast-derived extracellular vesicles are biological tools for the delivery of active molecules to bone. J Bone Mineral Res Off J Am Soc Bone Miner Res. 2018;33:517–33.

Article  CAS  Google Scholar 

Kobayashi-Sun J, Yamamori S, Kondo M, Kuroda J, Ikegame M, Suzuki N, et al. Uptake of osteoblast-derived extracellular vesicles promotes the differentiation of osteoclasts in the zebrafish scale. Commun Biol. 2020;3:190.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou Y, Hu G. M2 macrophages-derived exosomes regulate osteoclast differentiation by the CSF2/TNF-α axis. BMC Oral Health. 2024;24:107.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cai M, Peng H, Liu M, Huang M, Zheng W, Lai W, et al. Vascular pericyte-derived exosomes inhibit bone resorption via Traf3. Int J Nanomed. 2023;18:7065–77.

Article  CAS 

留言 (0)

沒有登入
gif