Quercetin in Osteoporosis Treatment: A Comprehensive Review of Its Mechanisms and Therapeutic Potential

Föger-Samwald U, Dovjak P, Azizi-Semrad U, Kerschan-Schindl K, Pietschmann P. Osteoporosis: pathophysiology and therapeutic options. EXCLI J. 2020;19:1017–37. https://doi.org/10.17179/excli2020-2591.

Article  PubMed  PubMed Central  Google Scholar 

Johnston CB, Dagar M. Osteoporosis in older adults. Med Clin North Am. 2020;104(5):873–84. https://doi.org/10.1016/j.mcna.2020.06.004.

Article  PubMed  Google Scholar 

Liu P, Wang W, Li Z, Li Y, Yu X, Tu J, et al. Ferroptosis: a new regulatory mechanism in osteoporosis. Oxid Med Cell Longev. 2022;2022:2634431. https://doi.org/10.1155/2022/2634431.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Imamudeen N, Basheer A, Iqbal AM, Manjila N, Haroon NN, Manjila S. Management of osteoporosis and spinal fractures: contemporary guidelines and evolving paradigms. Clin Med Res. 2022;20(2):95–106. https://doi.org/10.3121/cmr.2021.1612.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Langdahl BL. Overview of treatment approaches to osteoporosis. Br J Pharmacol. 2021;178(9):1891–906. https://doi.org/10.1111/bph.15024.

Article  CAS  PubMed  Google Scholar 

Strampel W, Emkey R, Civitelli R. Safety considerations with bisphosphonates for the treatment of osteoporosis. Drug Saf. 2007;30(9):755–63. https://doi.org/10.2165/00002018-200730090-00003.

Article  CAS  PubMed  Google Scholar 

Park SY, Kim SH, Kim TY, Lee YK, Ha YC, Jang S, et al. Incidence and risk of venous thromboembolism in bisphosphonates and selective estrogen receptor modulators treatment in Korea. J Korean Med Sci. 2021;36(27):e186. https://doi.org/10.3346/jkms.2021.36.e186.

Everts-Graber J, Lehmann D, Burkard JP, Schaller B, Gahl B, Häuselmann H, et al. Risk of osteonecrosis of the jaw under denosumab compared to bisphosphonates in patients with osteoporosis. J Bone Miner Res. 2022;37(2):340–8. https://doi.org/10.1002/jbmr.4472.

Sleeman A, Clements JN. Abaloparatide: a new pharmacological option for osteoporosis. Am J Health Syst Pharm. 2019;76(3):130–5. https://doi.org/10.1093/ajhp/zxy022.

Lim SY. Romosozumab for the treatment of osteoporosis in women: efficacy, safety, and cardiovascular risk. Womens Health (Lond). 2022;18:17455057221125576. https://doi.org/10.1177/17455057221125577.

Georgiou N, Kakava MG, Routsi EA, Petsas E, Stavridis N, Freris C, et al. Quercetin: a potential polydynamic drug. Molecules (Basel). 2023;28(24):8141. https://doi.org/10.3390/molecules28248141.

Gong J, Pan X, Zhou X, Zhu F. Dietary quercetin protects Cherax quadricarinatus against white spot syndrome virus infection. J Invertebr Pathol. 2023;198:107931. https://doi.org/10.1016/j.jip.2023.107931.

Wang G, Wang Y, Yao L, Gu W, Zhao S, Shen Z, et al. Pharmacological activity of quercetin: an updated review. Evid Based Complement Alternat Med. 2022;2022:3997190. https://doi.org/10.1155/2022/3997190.

Zhang W, Zheng Y, Yan F, Dong M, Ren Y. Research progress of quercetin in cardiovascular disease. Front Cardiovasc Med. 2023;10:1203713. https://doi.org/10.3389/fcvm.2023.1203713.

Shi GJ, Li Y, Cao QH, Wu HX, Tang XY, Gao XH, et al. In vitro and in vivo evidence that quercetin protects against diabetes and its complications: a systematic review of the literature. Biomed Pharmacother. 2019;109:1085–99. https://doi.org/10.1016/j.biopha.2018.10.130.

•• Cao L, Wang J, Zhang Y, Tian F, Wang C. Osteoprotective effects of flavonoids: evidence from in vivo and in vitro studies (Review). Mol Med Rep. 2022;25(6):200. https://doi.org/10.3892/mmr.2022.12716. This paper highlights the potential of quercetin as a natural therapeutic agent in the prevention and treatment of bone-related diseases by summarizing the results of published experimental and clinical studies.

Salvio G, Ciarloni A, Gianfelice C, Lacchè F, Sabatelli S, Giacchetti G, et al. The effects of polyphenols on bone metabolism in postmenopausal women: systematic review and meta-analysis of randomized control trials. Antioxidants (Basel). 2023;12(10):1830. https://doi.org/10.3390/antiox12101830.

Baş A, Albeniz I. Investigation of the effects of eugenol and quercetin on bone loss in STZ-NA induced diabetic rats utilizing micro CT. J Diabetes Metab Disord. 2022;21(1):637–46. https://doi.org/10.1007/s40200-022-01026-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun J, Pan Y, Li X, Wang L, Liu M, Tu P, et al. Quercetin attenuates osteoporosis in orchiectomy mice by regulating glucose and lipid metabolism via the GPRC6A/AMPK/mTOR signaling pathway. Front Endocrinol. 2022;13:849544. https://doi.org/10.3389/fendo.2022.849544.

Ge YW, Feng K, Liu XL, Zhu ZA, Chen HF, Chang YY, et al. Quercetin inhibits macrophage polarization through the p-38α/β signalling pathway and regulates OPG/RANKL balance in a mouse skull model. J Cell Mol Med. 2020;24(5):3203–16. https://doi.org/10.1111/jcmm.14995.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiong Y, Huang CW, Shi C, Peng L, Cheng YT, Hong W, et al. Quercetin suppresses ovariectomy-induced osteoporosis in rat mandibles by regulating autophagy and the NLRP3 pathway. Exp Biol Med (Maywood). 2023;248(23):2363–80. https://doi.org/10.1177/15353702231211977.

Article  CAS  PubMed  Google Scholar 

Pandit AP, Omase SB, Mute VM. A chitosan film containing quercetin-loaded transfersomes for treatment of secondary osteoporosis. Drug Deliv Transl Res. 2020;10(5):1495–506. https://doi.org/10.1007/s13346-020-00708-5.

Article  CAS  PubMed  Google Scholar 

Zhou Y, Wu Y, Ma W, Jiang X, Takemra A, Uemura M, et al. The effect of quercetin delivery system on osteogenesis and angiogenesis under osteoporotic conditions. J Mater Chem B. 2017;5(3):612–25. https://doi.org/10.1039/c6tb02312f.

Abd El-Fattah AI, Fathy MM, Ali ZY, El-Garawany AEA, Mohamed EK. Enhanced therapeutic benefit of quercetin-loaded phytosome nanoparticles in ovariectomized rats. Chem Biol Interact. 2017;271:30–8. https://doi.org/10.1016/j.cbi.2017.04.026.

Article  CAS  PubMed  Google Scholar 

•• Wang Y, Che L, Chen X, He Z, Song D, Yuan Y, et al. Repurpose dasatinib and quercetin: targeting senescent cells ameliorates postmenopausal osteoporosis and rejuvenates bone regeneration. Bioact Mater. 2023;25:13–28. https://doi.org/10.1016/j.bioactmat.2023.01.009. Quercetin targets senescent BMSCs, restores the function of senescent BMSCs, improves skeletal homeostasis, and effectively exerts its anti-OP effects.

Feng L, Yang Z, Hou N, Wang M, Lu X, Li Y, et al. Long non-coding RNA Malat1 increases the rescuing effect of quercetin on TNFα-impaired bone marrow stem cell osteogenesis and ovariectomy-induced osteoporosis. Int J Mol Sci. 2023;24(6):5965. https://doi.org/10.3390/ijms24065965.

Mousavi S, Vakili S, Zal F, Savardashtaki A, Jafarinia M, Sabetian S, et al. Quercetin potentiates the anti-osteoporotic effects of alendronate through modulation of autophagy and apoptosis mechanisms in ovariectomy-induced bone loss rat model. Mol Biol Rep. 2023;50(4):3693–703. https://doi.org/10.1007/s11033-023-08311-w.

Article  CAS  PubMed  Google Scholar 

Vakili S, Zal F, Mostafavi-Pour Z, Savardashtaki A, Koohpeyma F. Quercetin and vitamin E alleviate ovariectomy-induced osteoporosis by modulating autophagy and apoptosis in rat bone cells. J Cell Physiol. 2021;236(5):3495–509. https://doi.org/10.1002/jcp.30087.

Article  CAS  PubMed  Google Scholar 

Xing LZ, Ni HJ, Wang YL. Quercitrin attenuates osteoporosis in ovariectomized rats by regulating mitogen-activated protein kinase (MAPK) signaling pathways. Biomed Pharmacother. 2017;89:1136–41. https://doi.org/10.1016/j.biopha.2017.02.073.

Gao Q, Wang L, Wang S, Huang B, Jing Y, Su J. Bone marrow mesenchymal stromal cells: identification, classification, and differentiation. Front Cell Dev Biol. 2021;9:787118. https://doi.org/10.3389/fcell.2021.787118.

Ning K, Liu S, Yang B, Wang R, Man G, Wang DE, et al. Update on the effects of energy metabolism in bone marrow mesenchymal stem cells differentiation. Mol Metab. 2022;58:101450. https://doi.org/10.1016/j.molmet.2022.101450.

Kurenkova AD, Medvedeva EV, Newton PT, Chagin AS. Niches for skeletal stem cells of mesenchymal origin. Front Cell Dev Biol. 2020;8:592. https://doi.org/10.3389/fcell.2020.00592.

Qadir A, Liang S, Wu Z, Chen Z, Hu L, Qian A. Senile osteoporosis: the involvement of differentiation and senescence of bone marrow stromal cells. Int J Mol Sci. 2020;21(1):349. https://doi.org/10.3390/ijms21010349.

Zhang Q, Liang N, He B, Wu S, Wen D, Tang X, et al. SDF-1 induces directional chemotaxis of BMSCs at the intervertebral fusion site and promotes osteogenic differentiation by regulating Wnt/β-catenin in the bone marrow chimera spinal intervertebral fusion mouse model. Turk J Biol. 2023;47(1):14–28. https://doi.org/10.55730/1300-0152.2638.

Han Y, Yang J, Fang J, Zhou Y, Candi E, Wang J, et al. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduct Target Ther. 2022;7(1):92. https://doi.org/10.1038/s41392-022-00932-0.

Article  PubMed  PubMed Central  Google Scholar 

Wang L, Dai HW, Zheng J, Zhou J, Chen DS. Effect of quercetin on the cell cycle and adhesion molecules of NOD/SCID mice with acute B lymphocytic leukemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2018;26(6):1616–20. https://doi.org/10.7534/j.issn.1009-2137.2018.06.006.

Article  PubMed  Google Scholar 

Ramesh P, Jagadeesan R, Sekaran S, Dhanasekaran A, Vimalraj S. Flavonoids: classification, function, and molecular mechanisms involved in bone remodelling. Front Endocrinol. 2021;12:779638. https://doi.org/10.3389/fendo.2021.779638.

Li CJ, Cheng P, Liang MK, Chen YS, Lu Q, Wang JY, et al. MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation. J Clin Investig. 2015;125(4):1509–22. https://doi.org/10.1172/jci77716.

Article  PubMed  PubMed Central  Google Scholar 

Wang X, Zou X, Zhao J, Wu X, E L, Feng L, et al. Site-specific characteristics of bone marrow mesenchymal stromal cells modify the effect of aging on the skeleton. Rejuvenation Res. 2016;19(5):351–61. https://doi.org/10.1089/rej.2015.1766

Xing X, Tang Q, Zou J, Huang H, Yang J, Gao X, et al. Bone-targeted delivery of senolytics to eliminate senescent cells increases bone formation in senile osteoporosis. Acta Biomater. 2023;157:352–66. https://doi.org/10.1016/j.actbio.2022.11.056.

Article  CAS  PubMed  Google Scholar 

Xing X, Huang H, Gao X, Yang J, Tang Q, Xu X, et al. Local elimination of senescent cells promotes bone defect repair during aging. ACS Appl Mater Interfaces. 2022;14(3):3885–99. https://doi.org/10.1021/acsami.1c22138.

Article  CAS  PubMed  Google Scholar 

Khotib J, Marhaeny HD, Miatmoko A, Budiatin AS, Ardianto C, Rahmadi M, et al. Differentiation of osteoblasts: the links between essential transcription factors. J Biomol Struct Dyn. 2023;41(19):10257–76. https://doi.org/10.1080/07391102.2022.2148749.

Article  CAS  PubMed  Google Scholar 

Ren M, Wang X, Hu M, Jiang Y, Xu D, Xiang H, et al. Enhanced bone formation in rat critical-size tibia defect by a novel quercetin-containing alpha-calcium sulphate hemihydrate/nano-hydroxyapatite composite. Biomed Pharmacother. 2022;146:112570. https://doi.org/10.1016/j.biopha.2021.112570.

Schlesinger PH, Blair HC, Beer Stolz D, Riazanski V, Ray EC, Tourkova IL, et al. Cellular and extracellular matrix of bone, with principles of synthesis and dependency of mineral deposition on cell membrane transport. Am J Physiol Cell Physiol. 2020;318(1):C111–24. https://doi.org/10.1152/ajpcell.00120.2019.

Article  CAS  PubMed  Google Scholar 

Muñoz A, Docaj A, Ugarteburu M, Carriero A. Poor bone matrix quality: what can be done about it? Curr Osteoporos Rep. 2021;19(5):510–31. https://doi.org/10.1007/s11914-021-00696-6.

Article  PubMed  Google Scholar 

Wang X, Schröder HC, Feng Q, Diehl-Seifert B, Grebenjuk VA, Müller WE. Isoquercitrin and polyphosphate co-enhance mineralization of human osteoblast-like SaOS-2 cells via separate activation of two RUNX2 cofactors AFT6 and Ets1. Biochem Pharmacol. 2014;89(3):413–21. https://doi.org/10.1016/j.bcp.2014.03.020.

Article  CAS  PubMed  Google Scholar 

Raj Preeth D, Saravanan S, Shairam M, Selvakumar N, Selestin Raja I, Dhanasekaran A, et al. Bioactive Zinc(II) complex incorporated PCL/gelatin electrospun nanofiber enhanced bone tissue regeneration. Eur J Pharm Sci. 2021;160:105768. https://doi.org/10.1016/j.ejps.2021.105768.

Vimalraj S, Rajalakshmi S, Raj Preeth D, Vinoth Kumar S, Deepak T, Gopinath V, et al. Mixed-ligand copper(II) complex of quercetin regulate osteogenesis and angiogenesis. Mater Sci Eng C Mater Biol Appl. 2018;83:187–94. https://doi.org/10.1016/j.msec.2017.09.005.

• Vlashi R, Zhang X, Wu M, Chen G. Wnt signaling: essential roles in osteoblast differentiation, bone metabolism and therapeutic implications for bone and skeletal disorders. Genes Dis. 2023;10(4):1291–317. https://doi.org/10.1016/j.gendis.2022.07.011. The important role of the WNT signaling pathway in bone metabolism is elucidated, as well as its interactions with other signaling pathways in the potential gene regulatory network of bone metabolism.

Littman J, Yang W, Olansen J, Phornphutkul C, Aaron RK. LRP5, Bone mass polymorphisms and skeletal disorders. Genes (Basel). 2023;14(10):1846. https://doi.org/10.3390/genes14101846.

Predes D, Maia LA, Matias I, Araujo HPM, Soares C, Barros-Aragão FGQ, et al. The flavonol quercitrin hinders GSK3 activity and potentiates the Wnt/β-catenin signaling pathway. Int J Mol Sci. 2022;23(20):12078. https://doi.org/10.3390/ijms232012078.

Komori T. Regulation of osteoblast differentiation by transcription factors. J Cell Biochem. 2006;99(5):1233–9. https://doi.org/10.1002/jcb.20958.

Article  CAS  PubMed  Google Scholar 

Komori T. Runx2, an inducer of osteoblast and chondrocyte differentiation. Histochem Cell Biol. 2018;149(4):313–23. https://doi.org/10.1007/s00418-018-1640-6.

留言 (0)

沒有登入
gif