Osteocytes and Paget’s Disease of Bone

• Singer FR. Paget’s disease of bone. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000. An excellent review of the history and clinical aspects of Paget’s disease of bone.

Roodman GD, Windle JJ. Paget disease of bone. J Clin Invest. 2005;115(2):200–8. https://doi.org/10.1172/jci24281.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roodman GD, Kurihara N, Ohsaki Y, Kukita A, Hosking D, Demulder A, Smith JF, Singer FR. Interleukin 6. A potential autocrine/paracrine factor in Paget’s disease of bone. J Clin Invest. 1992;89(1):46–52. https://doi.org/10.1172/JCI115584.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Galson DL, Roodman GD. Pathobiology of Paget’s disease of bone. J Bone Metab. 2014;21(2):85–98. https://doi.org/10.11005/jbm.2014.21.2.85.

Article  PubMed  PubMed Central  Google Scholar 

Teramachi J, Zhou H, Subler MA, Kitagawa Y, Galson DL, Dempster DW, Windle JJ, Kurihara N, Roodman GD. Increased IL-6 expression in osteoclasts is necessary but not sufficient for the development of Paget’s disease of bone. J Bone Miner Res. 2014;29(6):1456–65. https://doi.org/10.1002/jbmr.2158.

Article  CAS  PubMed  Google Scholar 

Cundy T, Maslowski K, Grey A, Reid IR. Durability of response to zoledronate treatment and competing mortality in Paget’s disease of bone. J Bone Miner Res. 2017;32(4):753–6. https://doi.org/10.1002/jbmr.3029.

Article  CAS  PubMed  Google Scholar 

• Delgado-Calle J, Bellido T. The osteocyte as a signaling cell. Physiol Rev. 2022;102(1):379–410. https://doi.org/10.1152/physrev.00043.2020. Up-to-date review of osteocyte signaling, which provides major contributions to Paget’s disease of bone.

Article  CAS  PubMed  Google Scholar 

• Gennari L, Rendina D, Merlotti D, Cavati G, Mingiano C, Cosso R, Materozzi M, Pirrotta F, Abate V, Calabrese M, Falchetti A. Update on the pathogenesis and genetics of Paget’s disease of bone. Front Cell Dev Biol. 2022;10:932065. https://doi.org/10.3389/fcell.2022.932065. A clear recent summary of environmental and genetic causes of Paget’s disease of bone.

Article  PubMed  PubMed Central  Google Scholar 

Ling Z, Aini H, Kajikawa S, Shirakawa J, Tsuji K, Asou Y, Koga H, Sekiya I, Nifuji A, Noda M, Ezura Y. Osteolytic bone loss and skeletal deformities in a mouse model for early-onset Paget’s disease of bone with PFN1 mutation are treatable by alendronate. Pharmaceuticals (Basel). 2023;16(10):1395. https://doi.org/10.3390/ph16101395.

Article  CAS  PubMed  PubMed Central  Google Scholar 

• Kurihara N, Hiruma Y, Yamana K, Michou L, Rousseau C, Morissette J, Galson DL, Teramachi J, Zhou H, Dempster DW, Windle JJ, Brown JP, Roodman GD. Contributions of the measles virus nucleocapsid gene and the SQSTM1/p62(P392L) mutation to Paget’s disease. Cell Metab. 2011;13(1):23–34. https://doi.org/10.1016/j.cmet.2010.12.002. An important demonstration of MVNP and p62 effects on mouse models of Paget’s bone disease.

Daroszewska A, van Hof RJ, Rojas JA, Layfield R, Landao-Basonga E, Rose L, Rose K, Ralston SH. A point mutation in the ubiquitin-associated domain of SQSMT1 is sufficient to cause a Paget’s disease-like disorder in mice. Hum Mol Genet. 2011;20(14):2734–44. https://doi.org/10.1093/hmg/ddr172.

Article  CAS  PubMed  Google Scholar 

Gallone S, Di Stefano M, Rainero I, Fenoglio P, Gravante E, Incardona S, Acutis PL, Maniaci MG, Isaia GC, Pinessi L. Detection of exon 8 mutations in sqstm1/p62 gene by mutation-specific restriction enzyme digestion: a sensitive screening for Paget disease of bone. Panminerva Med. 2011;53(1):71–2.

CAS  PubMed  Google Scholar 

Menaa C, Reddy SV, Kurihara N, Maeda H, Anderson D, Cundy T, Cornish J, Singer FR, Bruder JM, Roodman GD. Enhanced RANK ligand expression and responsivity of bone marrow cells in Paget’s disease of bone. J Clin Invest. 2000;105(12):1833–8. https://doi.org/10.1172/jci9133.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Teramachi J, Nagata Y, Mohammad K, Inagaki Y, Ohata Y, Guise T, Michou L, Brown JP, Windle JJ, Kurihara N, Roodman GD. Measles virus nucleocapsid protein increases osteoblast differentiation in Paget’s disease. J Clin Invest. 2016;126(3):1012–22. https://doi.org/10.1172/JCI82012.

Article  PubMed  PubMed Central  Google Scholar 

Boock V, Roy B, Pfeffer G, Kimonis V. Therapeutic developments for valosin-containing protein mediated multisystem proteinopathy. Curr Opin Neurol. 2023;36(5):432–40. https://doi.org/10.1097/WCO.0000000000001184.

Article  CAS  PubMed  Google Scholar 

Huybrechts Y, De Ridder R, Steenackers E, Devogelaer JP, Mortier G, Hendrickx G, Van Hul W. Genetic screening of ZNF687 and PFN1 in a Paget’s disease of bone cohort indicates an important role for the nuclear localization signal of ZNF687. Calcif Tissue Int. 2023;113(5):552–7. https://doi.org/10.1007/s00223-023-01137-5.

Article  CAS  PubMed  Google Scholar 

Siris ES, Roodman GD. Paget’s disease of bone. In: Rosen CJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 8th ed. Washington DC: American Society for Bone and Mineral Research: Wiley-Blackwell; 2013.659-68.

Harvey L, Gray T, Beneton MN, Douglas DL, Kanis JA, Russell RG. Ultrastructural features of the osteoclasts from Paget’s disease of bone in relation to a viral aetiology. J Clin Pathol. 1982;35(7):771–9. https://doi.org/10.1136/jcp.35.7.771.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Basle MF, Rebel A, Fournier JG, Russell WC, Malkani K. On the trail of paramyxoviruses in Paget’s disease of bone. Clin Orthop Relat Res. 1987;217:9–15.

Article  Google Scholar 

Helfrich MH, Hobson RP, Grabowski PS, Zurbriggen A, Cosby SL, Dickson GR, Fraser WD, Ooi CG, Selby PL, Crisp AJ, Wallace RG, Kahn S, Ralston SH. A negative search for a paramyxoviral etiology of Paget’s disease of bone: molecular, immunological, and ultrastructural studies in UK patients. J Bone Miner Res. 2000;15(12):2315–29. https://doi.org/10.1359/jbmr.2000.15.12.2315.

Article  CAS  PubMed  Google Scholar 

•• Kurihara N, Zhou H, Reddy SV, Garcia Palacios V, Subler MA, Dempster DW, Windle JJ, Roodman GD. Expression of measles virus nucleocapsid protein in osteoclasts induces Paget’s disease-like bone lesions in mice. J Bone Miner Res. 2006;21(3):446–55. https://doi.org/10.1359/JBMR.051108. First demonstration that MVNP targeted to osteoclasts could induce Paget’s disease of bone in mice.

Miyagawa K, Ohata Y, Delgado-Calle J, Teramachi J, Zhou H, Dempster DD, Subler MA, Windle JJ, Chirgwin JM, Roodman GD, Kurihara N. Osteoclast-derived IGF1 is required for pagetic lesion formation in vivo. JCI Insight. 2020;5(6):e133113. https://doi.org/10.1172/jci.insight.133113.

Article  PubMed  PubMed Central  Google Scholar 

•• Miyagawa K, Tenshin H, Mulcrone PL, Delgado-Calle J, Subler MA, Windle JJ, Chirgwin JM, Roodman GD, Kurihara N. Osteoclast-derived IGF1 induces RANKL production in osteocytes and contributes to pagetic lesion formation. JCI Insight. 2023;8(14):e159838. https://doi.org/10.1172/jci.insight.159838. Demonstration that osteoclast-derived IGF1 acts on osteocytes, contributing to pagetic lesions in mice.

Article  PubMed  PubMed Central  Google Scholar 

Wang FM, Sarmasik A, Hiruma Y, Sun Q, Sammut B, Windle JJ, Roodman GD, Galson DL. Measles virus nucleocapsid protein, a key contributor to Paget’s disease, increases IL-6 expression via down-regulation of FoxO3/Sirt1 signaling. Bone. 2013;53(1):269–76. https://doi.org/10.1016/j.bone.2012.12.007.

Article  CAS  PubMed  Google Scholar 

Bellido T, Borba VZ, Roberson P, Manolagas SC. Activation of the Janus kinase/STAT (signal transducer and activator of transcription) signal transduction pathway by interleukin-6-type cytokines promotes osteoblast differentiation. Endocrinology. 1997;138(9):3666–76. https://doi.org/10.1210/endo.138.9.5364.

Article  CAS  PubMed  Google Scholar 

Wu Q, Zhou X, Huang D, Ji Y, Kang F. IL-6 enhances osteocyte-mediated osteoclastogenesis by promoting JAK2 and RANKL activity in vitro. Cell Physiol Biochem. 2017;41(4):1360–9. https://doi.org/10.1159/000465455.

Article  CAS  PubMed  Google Scholar 

Mills BG, Frausto A. Cytokines expressed in multinucleated cells: Paget’s disease and giant cell tumors versus normal bone. Calcif Tissue Int. 1997;61(1):16–21. https://doi.org/10.1007/s002239900285.

Article  CAS  PubMed  Google Scholar 

Neale SD, Smith R, Wass JA, Athanasou NA. Osteoclast differentiation from circulating mononuclear precursors in Paget’s disease is hypersensitive to 1,25-dihydroxyvitamin D3 and RANKL. Bone. 2000;27(3):409–16. https://doi.org/10.1016/s8756-3282(00)00345-8.

Article  CAS  PubMed  Google Scholar 

Florencio-Silva R, Sasso GR, Sasso-Cerri E, Simões MJ, Cerri PS. Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int. 2015;2015:421746. https://doi.org/10.1155/2015/421746.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Belanger LF, Jarry L, Uhthoff HK. Osteocytic osteolysis in Paget’s disease. Rev Can Biol. 1968;27(1):37–44.

CAS  PubMed  Google Scholar 

Singer FR, Mills BG, Gruber HE, Windle JJ, Roodman GD. Ultrastructure of bone cells in Paget’s disease of bone. J Bone Miner Res. 2006;21(Suppl 2):51–4. https://doi.org/10.1359/jbmr.06s209.

Article  Google Scholar 

Yavropoulou MP, van Lierop AH, Hamdy NA, Rizzoli R, Papapoulos SE. Serum sclerostin levels in Paget’s disease and prostate cancer with bone metastases with a wide range of bone turnover. Bone. 2012;51(1):153–7. https://doi.org/10.1016/j.bone.2012.04.016.

Article  CAS  PubMed  Google Scholar 

Idolazzi L, Fassio A, Tripi G, Braga V, Viapiana O, Adami G, Rossini M, Gatti D. Circulating Dickkopf-1 and sclerostin in patients with Paget’s disease of bone. Clin Rheumatol. 2017;36(4):925–8. https://doi.org/10.1007/s10067-016-3497-1.

Article  PubMed  Google Scholar 

Chen L, Gao G, Shen L, Yue H, Zhang G, Zhang Z. Serum sclerostin and its association with bone turnover marker in metabolic bone diseases. Dis Markers. 2022;2022:7902046. https://doi.org/10.1155/2022/7902046.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bonewald LF. The amazing osteocyte. J Bone Miner Res. 2011;26(2):229–38. https://doi.org/10.1002/jbmr.320.

留言 (0)

沒有登入
gif