The genomic regulation of metastatic dormancy

Lambert, A. W., Pattabiraman, D. R., & Weinberg, R. A. (2017). Emerging biological principles of metastasis. Cell, 168(4), 670–691.

Article  Google Scholar 

Aguirre-Ghiso, J. A. (2018). How dormant cancer persists and reawakens. Science, 361(6409), 1314–1315.

Article  Google Scholar 

Banys-Paluchowski, M., Reinhardt, F., & Fehm, T. (2020). Disseminated tumor cells and dormancy in breast cancer progression. Advances in Experimental Medicine and Biology, 122035, 35–43.

Bushnell, G. G., Deshmukh, A. P., den Hollander, P., Luo, M., Soundararajan, R., Jia, D., Levine, H., Mani, S. A., & Wicha, M. S. (2021). Breast cancer dormancy: Need for clinically relevant models to address current gaps in knowledge. NPJ Breast Cancer, 7(1), 66.

Article  Google Scholar 

Phan, T. G., & Croucher, P. I. (2020). The dormant cancer cell life cycle. Nature Reviews Cancer, 20(7), 398–411.

Article  Google Scholar 

Gawrzak, S., Rinaldi, L., Gregorio, S., Arenas, E. J., Salvador, F., Urosevic, J., et al. (2018). MSK1 regulates luminal cell differentiation and metastatic dormancy in ER(+) breast cancer. Nature Cell Biology, 20(2), 211–221.

Article  Google Scholar 

Keydar, I., Chen, L., Karby, S., Weiss, F. R., Delarea, J., Radu, M., Chaitcik, S., & Brenner, H. J. (1979). Establishment and characterization of a cell line of human breast carcinoma origin. European Journal of Cancer, 15(5), 659–670.

Article  Google Scholar 

Harrell, J. C., Dye, W. W., Allred, D. C., Jedlicka, P., Spoelstra, N. S., Sartorius, C. A., & Horwitz, K. B. (2006). Estrogen receptor positive breast cancer metastasis: Altered hormonal sensitivity and tumor aggressiveness in lymphatic vessels and lymph nodes. Cancer Research, 66(18), 9308–9315.

Article  Google Scholar 

Puchalapalli, M., Zeng, X., Mu, L., Anderson, A., Hix, G. L., Zhang, M., Sayyad, M. R., Mosticone, W. S., Clevenger, C. V., & Koblinski, J. E. (2016). NSG mice provide a better spontaneous model of breast cancer metastasis than athymic (Nude) mice. PLoS ONE, 11(9), e0163521.

Article  Google Scholar 

Lefley, D., Howard, F., Arshad, F., Bradbury, S., Brown, H., Tulotta, C., Eyre, R., Alférez, D., Wilkinson, J. M., Holen, I., Clarke, R. B., & Ottewell, P. (2019). Development of clinically relevant in vivo metastasis models using human bone discs and breast cancer patient-derived xenografts. Breast Cancer Research, 21(1), 130–1220.

Lu, X., Mu, E., Wei, Y., Riethdorf, S., Yang, Q., Yuan, M., Yan, J., Hua, Y., Tiede, B. J., Lu, X., Haffty, B. G., Pantel, K., Massagué, J., & Kang, Y. (2011). VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging alpha4beta1-positive osteoclast progenitors. Cancer Cell, 20(6), 701–714.

Article  Google Scholar 

Albrengues, J., Shields, M. A., Ng, D., Park, C. G., Ambrico, A., Poindexter, M. E., et al. (2018). Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science, 361(6409), eaao4227.

Article  Google Scholar 

Wada, M., Canals, D., Adada, M., Coant, N., Salama, M. F., Helke, K. L., Arthur, J. S., Shroyer, K. R., Kitatani, K., Obeid, L. M., & Hannun, Y. A. (2017). P38 delta MAPK promotes breast cancer progression and lung metastasis by enhancing cell proliferation and cell detachment. Oncogene., 36(47), 6649–6657.

Article  Google Scholar 

Barkan, D., Kleinman, H., Simmons, J. L., Asmussen, H., Kamaraju, A. K., Hoenorhoff, M. J., Liu, Z. Y., Costes, S. V., Cho, E. H., Lockett, S., Khanna, C., Chambers, A. F., & Green, J. E. (2008). Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton. Cancer Research, 68(15), 6241–6250.

Article  Google Scholar 

Rucci, N., Ricevuto, E., Ficorella, C., Longo, M., Perez, M., Di, G. C., Funari, A., Teti, A., & Migliaccio, S. (2004). In vivo bone metastases, osteoclastogenic ability, and phenotypic characterization of human breast cancer cells. Bone, 34(4), 697–709.

Article  Google Scholar 

Sowder, M. E., & Johnson, R. W. (2018). Enrichment and detection of bone disseminated tumor cells in models of low tumor burden. Science Reports, 8(1), 14299.

Article  Google Scholar 

Carlson, P., Dasgupta, A., Grzelak, C. A., Kim, J., Barrett, A., Coleman, I. M., Shor, R. E., Goddard, E. T., Dai, J., Schweitzer, E. M., Lim, A. R., Crist, S. B., Cheresh, D. A., Nelson, P. S., Hansen, K. C., & Ghajar, C. M. (2019). Targeting the perivascular niche sensitizes disseminated tumour cells to chemotherapy. Nature Cell Biology, 21(2), 238–250.

Article  Google Scholar 

Holen, I., Walker, M., Nutter, F., Fowles, A., Evans, C. A., Eaton, C. L., & Ottewell, P. D. (2016). Oestrogen receptor positive breast cancer metastasis to bone: Inhibition by targeting the bone microenvironment in vivo. Clinical and Experimental Metastasis, 33(3), 211–224.

Article  Google Scholar 

Malladi, S., Macalinao, D. G., Jin, X., He, L., Basnet, H., Zou, Y., De, S. E., & Massagué, J. (2016). Metastatic Latency and Immune Evasion through Autocrine Inhibition of WNT. Cell, 165(1), 45–60.

Article  Google Scholar 

Ghajar, C. M., Peinado, H., Mori, H., Matei, I. R., Evason, K. J., Brazier, H., et al. (2013). The perivascular niche regulates breast tumour dormancy. Nature Cell Biology, 15(7), 807–817.

Article  Google Scholar 

Gao, H., Chakraborty, G., Lee-Lim, A. P., Mo, Q., Decker, M., Vonica, A., Shen, R., Brogi, E., Brivanlou, A. H., & Giancotti, F. G. (2012). The BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites. Cell, 150(4), 764–779.

Article  Google Scholar 

Montagner, M., Bhome, R., Hooper, S., Chakravarty, P., Qin, X., Sufi, J., Bhargava, A., Ratcliffe, C. D. H., Naito, Y., Pocaterra, A., Tape, C. J., & Sahai, E. (2020). Crosstalk with lung epithelial cells regulates Sfrp2-mediated latency in breast cancer dissemination. Nature Cell Biology, 22(3), 289–296.

Article  Google Scholar 

De Cock, J. M., Shibue, T., Dongre, A., Keckesova, Z., Reinhardt, F., & Weinberg, R. A. (2016). Inflammation triggers Zeb1-dependent escape from tumor latency. Cancer Research, 76(23), 6778–6784.

Article  Google Scholar 

Piranlioglu, R., Lee, E., Ouzounova, M., Bollag, R. J., Vinyard, A. H., Arbab, A. S., Marasco, D., Guzel, M., Cowell, J. K., Thangaraju, M., Chadli, A., Hassan, K. A., Wicha, M. S., Celis, E., & Korkaya, H. (2019). Primary tumor-induced immunity eradicates disseminated tumor cells in syngeneic mouse model. Nature Communications, 10(1), 1430.

Article  Google Scholar 

Luo, X. L., Deng, C. C., Su, X. D., Wang, F., Chen, Z., Wu, X. P., Liang, S. B., Liu, J. H., & Fu, L. W. (2018). Loss of MED12 induces tumor dormancy in human epithelial ovarian cancer via downregulation of EGFR. Cancer Research, 78(13), 3532–3543.

Article  Google Scholar 

Liang, X., Gu, J., Li, T., Zhao, L., Fu, X., Zhang, W., Wang, J., Shang, Z., Huang, W., & Zhou, J. (2018). PAX5 haploinsufficiency induce cancer cell dormancy in Raji cells. Experimental Cell Research, 367(1), 30–36.

Article  Google Scholar 

Kleinsmith, L. J., & Pierce, G. B., Jr. (1964). Multipotentiality of single embryonal carcinoma cells. Cancer Research, 24, 1544–1551.

Google Scholar 

Lawson, M. A., McDonald, M. M., Kovacic, N., Hua, K. W., Terry, R. L., Down, J., Kaplan, W., Paton-Hough, J., Fellows, C., Pettitt, J. A., Neil, D. T., Van, V. E., Baldock, P. A., Rogers, M. J., Eaton, C. L., Vanderkerken, K., Pettit, A. R., Quinn, J. M., Zannettino, A. C., … Croucher, P. I. (2015). Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche. Nature Communications, 6, 8983.

Article  Google Scholar 

Chery, L., Lam, H. M., Coleman, I., Lakely, B., Coleman, R., Larson, S., Aguirre-Ghiso, J. A., Xia, J., Gulati, R., Nelson, P. S., Montgomery, B., Lange, P., Snyder, L. A., Vessella, R. L., & Morrissey, C. (2014). Characterization of single disseminated prostate cancer cells reveals tumor cell heterogeneity and identifies dormancy associated pathways. Oncotarget, 5(20), 9939–9951.

Article  Google Scholar 

Sistigu, A., Musella, M., Galassi, C., Vitale, I., & De, M. R. (2020). Tuning cancer fate: Tumor microenvironment’s role in cancer stem cell quiescence and reawakening. Frontiers Immunology, 11, 2166.

Article  Google Scholar 

Jahangiri, L., & Ishola, T. (2022). Dormancy in breast cancer, the role of autophagy, lncRNAs, miRNAs and exosomes. International Journal of Molecular Science, 23(9), 5271.

Article  Google Scholar 

Korentzelos, D., Clark, A. M., & Wells, A. (2020). A perspective on therapeutic pan-resistance in metastatic cancer. International Journal of Molecular Science, 21(19), E7304.

Article  Google Scholar 

Baram, T., Rubinstein-Achiasaf, L., Ben-Yaakov, H., & Ben-Baruch, A. (2021). Inflammation-driven breast tumor cell plasticity: Stemness/EMT, therapy resistance and dormancy. Frontiers Oncology, 10, 614468.

Article  Google Scholar 

Smart, J. A., Oleksak, J. E., & Hartsough, E. J. (2021). Cell Adhesion Molecules in Plasticity and Metastasis. Molecular Cancer Research, 19(1), 25–37.

Article  Google Scholar 

Dhaliwal, D., & Shepherd, T. G. (2022). Molecular and cellular mechanisms controlling integrin-mediated cell adhesion and tumor progression in ovarian cancer metastasis: A review. Clinical Experimental Metastasis, 39(2), 291–301.

Article  Google Scholar 

Stuelten, C. H., Parent, C. A., & Montell, D. J. (2018). Cell motility in cancer invasion and metastasis: Insights from simple model organisms. Nature Reviews Cancer, 18(5), 296–312.

Article  Google Scholar 

Genna, A., & Gil-Henn, H. (2018). FAK family kinases: The Yin and Yang of cancer cell invasiveness. Molecular and Cellular Oncology, 5(4), e1449584.

Article  Google Scholar 

Zavyalova, M. V., Denisov, E. V., Tashireva, L. A., Savelieva, O. E., Kaigorodova, E. V., Krakhmal, N. V., & Perelmuter, V. M. (2019). Intravasation as a key step in cancer metastasis. Biochemistry (Mosc), 84(7), 762–772.

Article  Google Scholar 

Tajbakhsh, A., Rivandi, M., Abedini, S., Pasdar, A., & Sahebkar, A. (2019). Regulators and mechanisms of anoikis in triple-negative breast cancer (TNBC): A review. Critical Reviews in Oncology and Hematology, 140, 17–27.

Article  Google Scholar 

Adeshakin, F. O., Adeshakin, A. O., Afolabi, L. O., Yan, D., Zhang, G., & Wan, X. (2021). Mechanisms for modulating anoikis resistance in cancer and the relevance of metabolic reprogramming. Frontiers Oncology, 11, 626577.

Article  Google Scholar 

Khan, S. U., Fatima, K., & Malik, F. (2022). Understanding the cell survival mechanism of anoikis-resistant cancer cells during different steps of metastasis. Clinical and Experimental Metastasis, 39(5), 715–726.

Article  Google Scholar 

Liu, Y., Zhang, Y., Ding, Y., & Zhuang, R. (2021). Platelet-mediated tumor metastasis mechanism and the role of cell adhesion molecules. Critical Reviews in Oncology and Hematology, 167, 103502.

Article  Google Scholar 

Reduzzi, C., Vismara, M., Gerratana, L., Silvestri, M., De, B. F., Raspagliesi, F., Verzoni, E., Di, C. S., Locati, L. D., Cristofanilli, M., Daidone, M. G., & Cappelletti, V. (2020). The curious phenomenon of dual-positive circulating cells: Longtime overlooked tumor cells. Seminars in Cancer Biology, 60, 344–350.

Article  Google Scholar 

Hamilton, G., & Rath, B. (2017). Circulating tumor cell interactions with macrophages: Implications for biology and treatment. Translational Lung Cancer Research, 6(4), 418–430.

Article  Google Scholar 

Banys, M., Krawczyk, N., & Fehm, T. (2014). The role and clinical relevance of disseminated tumor cells in breast cancer. Cancers (Basel), 6(1), 143–152.

Article  Google Scholar 

Linde, N., Fluegen, G., & Aguirre-Ghiso, J. A. (2016). The relationship between dormant cancer cells and their microenvironment. Advances in Cancer Reseach, 13, 245–71.

Google Scholar 

Ring, A., Spataro, M., Wicki, A., & Aceto, N. (2022). Clinical and biological aspects of disseminated tumor cells and dormancy in breast cancer. Frontiers in Cell and Developmental Biology, 10, 929893.

Article  Google Scholar 

Illyes, I., Tokes, A. M., Kovacs, A., Szasz, A. M., Molnar, B. A., Molnar, I. A., Kaszas, I., Baranyak, Z., Laszlo, Z., Kenessey, I., & Kulka, J. (2014). In breast cancer patients sentinel lymph node metastasis characteristics predict further axillary involvement. Virchows Archives, 465(1), 15–24.

留言 (0)

沒有登入
gif