Applied Sciences, Vol. 13, Pages 385: Experimental Study on a Supercritical CO2 Centrifugal Compressor Used in a MWe Scale Power Cycle

Conceptualization, Y.Z.; methodology, Y.Z.; software, Y.Z.; validation, Y.Z.; formal analysis, Y.Z.; investigation, Y.Z.; resources, X.G.; data curation, X.G.; writing—original draft preparation, Y.Z.; writing—review and editing, S.L., C.G.,Y.G. and Z.L.; visualization, Y.Z.; supervision, Y.J. and C.G.; project administration, Y.G.; funding acquisition, S.L. All authors have read and agreed to the published version of the manuscript.

Figure 1. The simple reheat cycle.

Figure 1. The simple reheat cycle.

Applsci 13 00385 g001

Figure 2. Distribution of the semi-open impeller. (a) Beta distribution, (b) Thickness distribution.

Figure 2. Distribution of the semi-open impeller. (a) Beta distribution, (b) Thickness distribution.

Applsci 13 00385 g002

Figure 3. Performance curve of the single-stage compressor (@ 40,000 RPM).

Figure 3. Performance curve of the single-stage compressor (@ 40,000 RPM).

Applsci 13 00385 g003

Figure 4. Schematic layout of the single-stage compressor.

Figure 4. Schematic layout of the single-stage compressor.

Applsci 13 00385 g004

Figure 5. Schematic figure of the rotor (left) and impeller (right).

Figure 5. Schematic figure of the rotor (left) and impeller (right).

Applsci 13 00385 g005

Figure 6. General experimental platform for the MWe sCO2 compressor.

Figure 6. General experimental platform for the MWe sCO2 compressor.

Applsci 13 00385 g006

Figure 7. 3-D graphic model of the general experimental platform.

Figure 7. 3-D graphic model of the general experimental platform.

Applsci 13 00385 g007

Figure 8. Circle diagram of the general experimental platform.

Figure 8. Circle diagram of the general experimental platform.

Applsci 13 00385 g008

Figure 9. Original experimental data and historical curves.

Figure 9. Original experimental data and historical curves.

Applsci 13 00385 g009

Figure 10. Pressure ratio performance curve (@ 31,000 ± 1000 RPM).

Figure 10. Pressure ratio performance curve (@ 31,000 ± 1000 RPM).

Applsci 13 00385 g010

Figure 11. Isentropic efficiency performance curve (@ 31,000 ± 1000 RPM).

Figure 11. Isentropic efficiency performance curve (@ 31,000 ± 1000 RPM).

Applsci 13 00385 g011

Figure 12. The compressor inlet conditions in the test (@ 31,000 ± 1000 RPM).

Figure 12. The compressor inlet conditions in the test (@ 31,000 ± 1000 RPM).

Applsci 13 00385 g012

Figure 13. Dimensionless isentropic head coefficient performance curve (@ 31,000 ± 1000 RPM).

Figure 13. Dimensionless isentropic head coefficient performance curve (@ 31,000 ± 1000 RPM).

Applsci 13 00385 g013

Figure 14. Dimensionless isentropic efficiency performance curve (@ 31,000 ± 1000 RPM).

Figure 14. Dimensionless isentropic efficiency performance curve (@ 31,000 ± 1000 RPM).

Applsci 13 00385 g014

Figure 15. Comparison of dimensionless isentropic head coefficient performance curve.

Figure 15. Comparison of dimensionless isentropic head coefficient performance curve.

Applsci 13 00385 g015

Figure 16. Comparison of dimensionless isentropic efficiency performance curve.

Figure 16. Comparison of dimensionless isentropic efficiency performance curve.

Applsci 13 00385 g016

Figure 17. The condensation acceleration velocity of inlet condition (@ 31,000 ± 1000 RPM).

Figure 17. The condensation acceleration velocity of inlet condition (@ 31,000 ± 1000 RPM).

Applsci 13 00385 g017

Figure 18. Dryness distribution of test point near the choke boundary and surge boundary.

Figure 18. Dryness distribution of test point near the choke boundary and surge boundary.

Applsci 13 00385 g018

Figure 19. Curve of density with change of outlet pressure and inlet temperature.

Figure 19. Curve of density with change of outlet pressure and inlet temperature.

Applsci 13 00385 g019

Figure 20. The impeller of single-stage compressor after tests.

Figure 20. The impeller of single-stage compressor after tests.

Applsci 13 00385 g020

Table 1. The main parameters of MWe sCO2 power cycle.

Table 1. The main parameters of MWe sCO2 power cycle.

ParameterValueBoiler thermal power>5 MWthCycle efficiency>21%Turbine inlet pressure20 MPaTurbine inlet temperature550 °CCompressor inlet pressure8 MPaCompressor inlet temperature35 °C

Table 2. Main design parameters of the single-stage centrifugal compressor.

Table 2. Main design parameters of the single-stage centrifugal compressor.

Inlet
PressureInlet
TemperatureMass Flow RatePressure RatioPowerIsentropic Efficiency8 MPa35 °C16.3 kg/s2.5~500 kW>80%

Table 3. Main structural parameters of the semi-open impeller.

Table 3. Main structural parameters of the semi-open impeller.

ParameterValueParameterValueHub radius/mm10 mmBlade angle (leading-edge)60°/54°/48°Impler radius/mm48 mmBlade angle (training-edge)55°Blade number15Blade height (leading-edge)7.5 mmTip clearance0.25 mmBlade height (training-edge)3.5 mmBlade inclination angle60°Thickness (leading-edge)0.3–0.6 mm

Table 4. Main performance of experimental platform for MWe sCO2 compressor.

Table 4. Main performance of experimental platform for MWe sCO2 compressor.

Performance IndexTest CapabilityExperimental speed0~40,000RPMExperimental mass flow0~25kg/sExperimental power0~800kWCompressor inlet pressure0~10MPaCompressor outlet pressure0~22MPaCompressor inlet temperature0~50°CCompressor outlet temperature0~100°C

Table 5. The parameters of temperature and pressure sensor.

Table 5. The parameters of temperature and pressure sensor.

RangeUncertaintyTypeInlet pressure0–10 MPa<±0.075% FSMonocrystalline SiliconOutlet pressure0–25 MPa<±0.075% FSMonocrystalline SiliconInlet temperature0–50 °C<±0.15 °CPT100oulet temperature0–100 °C<±0.15 °CPT100

Table 6. The parameters of Coriolis force mass flowmeter.

Table 6. The parameters of Coriolis force mass flowmeter.

PositionMass Flow
RangeDensity
RangeMass Flow UncertaintyDensity
Uncertainty-kg/sg/cm3%FSg/cm3Upstream2.5~25 400~1000<±0.2<±0.002

Table 7. Dimensionless experimental performance parameters of compressor.

Table 7. Dimensionless experimental performance parameters of compressor.

Dimensionless ParametersFormulaM*M/MrefN*N/NrefT01*(T01-273.13)/(Tref -273.13)T02*(T02-273.13)/(Tref -273.13)P01*P01/PrefP02*P02/Pref

Table 8. The tip clearance of the experimental impeller.

Table 8. The tip clearance of the experimental impeller.

DesignLeading Edge (Exp)Training Edge (Exp)Tip clearance0.25 mm0.43 mm0.45 mm

留言 (0)

沒有登入
gif