Towards elucidating disease-relevant states of neurons and glia by CRISPR-based functional genomics

Wightman DP, et al. A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer's disease. Nat Genet. 2021;53:1276–82.

Article  CAS  PubMed  Google Scholar 

Nott A, et al. Brain cell type-specific enhancer-promoter interactome maps and disease-risk association. Science. 2019;366:1134–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Novikova G, et al. Integration of Alzheimer's disease genetics and myeloid genomics identifies disease risk regulatory elements and genes. Nat Commun. 2021;12:1610.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Keren-Shaul H, et al. A unique microglia type associated with restricting development of Alzheimer's disease. Cell. 2017;169:1276–1290.e1217.

Article  CAS  PubMed  Google Scholar 

Zhou Y, et al. Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer's disease. Nat Med. 2020;26:131–42.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Balderrama-Gutierrez G, et al. Single-cell and nucleus RNA-seq in a mouse model of AD reveal activation of distinct glial subpopulations in the presence of plaques and tangles. bioRxiv. 2021:2021.2009.2029.462436.

Habib N, et al. Disease-associated astrocytes in Alzheimer's disease and aging. Nat Neurosci. 2020;23:701–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lau SF, Cao H, Fu AKY, Ip NY. Single-nucleus transcriptome analysis reveals dysregulation of angiogenic endothelial cells and neuroprotective glia in Alzheimer's disease. Proc Natl Acad Sci U S A. 2020;117:25800–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Olah M, et al. Single cell RNA sequencing of human microglia uncovers a subset associated with Alzheimer's disease. Nat Commun. 2020;11:6129.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mathys H, et al. Single-cell transcriptomic analysis of Alzheimer's disease. Nature. 2019;570:332–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gerrits E, et al. Distinct amyloid-β and tau-associated microglia profiles in Alzheimer's disease. Acta Neuropathol. 2021;141:681–96.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leng K, et al. Molecular characterization of selectively vulnerable neurons in Alzheimer's disease. Nat Neurosci. 2021;24:276–87.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morabito S, et al. Single-nucleus chromatin accessibility and transcriptomic characterization of Alzheimer's disease. Nat Genet. 2021;53:1143–55.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marinaro F, et al. Molecular and cellular pathology of monogenic Alzheimer’s disease at single cell resolution. bioRxiv. 2020:2020.2007.2014.202317.

Otero-Garcia M, et al. Molecular signatures underlying neurofibrillary tangle susceptibility in Alzheimer’s disease. Neuron. 2020;110:2929–48.

Article  Google Scholar 

Kia DA, et al. Identification of candidate Parkinson disease genes by integrating genome-wide association study, expression, and epigenetic data sets. JAMA Neurol. 2021;78:464–72.

Article  PubMed  Google Scholar 

Smajić S, et al. Single-cell sequencing of human midbrain reveals glial activation and a Parkinson-specific neuronal state. Brain. 2022;45:964–78.

Article  Google Scholar 

Zhong J, et al. Single-cell brain atlas of Parkinson's disease mouse model. J Genet Genomics. 2021;48:277–88.

Article  CAS  PubMed  Google Scholar 

Bradford J, et al. Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms. Proc Natl Acad Sci U S A. 2009;106:22480–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wood TE, et al. Mutant huntingtin reduction in astrocytes slows disease progression in the BACHD conditional Huntington's disease mouse model. Hum Mol Genet. 2019;28:487–500.

CAS  PubMed  Google Scholar 

Al-Dalahmah O, et al. Single-nucleus RNA-seq identifies Huntington disease astrocyte states. Acta Neuropathol Commun. 2020;8:19.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee H, et al. Cell type-specific transcriptomics reveals that mutant huntingtin leads to mitochondrial RNA release and neuronal innate immune activation. Neuron. 2020;107:891–908.e898.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arzberger T, Krampfl K, Leimgruber S, Weindl A. Changes of NMDA receptor subunit (NR1, NR2B) and glutamate transporter (GLT1) mRNA expression in Huntington's disease--an in situ hybridization study. J Neuropathol Exp Neurol. 1997;56:440–54.

Article  CAS  PubMed  Google Scholar 

Shin JY, et al. Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity. J Cell Biol. 2005;171:1001–12.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Faideau M, et al. In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation with Huntington's disease subjects. Hum Mol Genet. 2010;19:3053–67.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baranzini SE, Oksenberg JR. The Genetics of Multiple Sclerosis: From 0 to 200 in 50 Years. Trends Genet. 2017;33:960–70.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jäkel S, et al. Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature. 2019;566:543–7.

Article  PubMed  PubMed Central  Google Scholar 

Schirmer L, et al. Neuronal vulnerability and multilineage diversity in multiple sclerosis. Nature. 2019;573:75–82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Absinta M, et al. A lymphocyte-microglia-astrocyte axis in chronic active multiple sclerosis. Nature. 2021;597:709–14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

van Rheenen W, et al. Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology. Nat Genet. 2021;53:1636–48.

Article  PubMed  PubMed Central  Google Scholar 

Pineda SS, et al. Single-cell profiling of the human primary motor cortex in ALS and FTLD. bioRxiv. 2021:2021.2007.2007.451374.

Rexach JE, et al. Tau pathology drives dementia risk-associated gene networks toward chronic inflammatory states and immunosuppression. Cell Rep. 2020;33:108398.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pardiñas AF, et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat Genet. 2018;50:381–9.

Article  PubMed  PubMed Central  Google Scholar 

Reiner BC, et al. Single-nuclei transcriptomics of schizophrenia prefrontal cortex primarily implicates neuronal subtypes. bioRxiv. 2021:2020.2007.2029.227355.

Ruzicka WB, et al. Single-cell dissection of schizophrenia reveals neurodevelopmental-synaptic axis and transcriptional resilience. medRxiv. 2020:2020.2011.2006.20225342.

Velmeshev D, et al. Single-cell genomics identifies cell type-specific molecular changes in autism. Science. 2019;364:685–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jinek M, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–21.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cong L, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mali P, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339:823–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gilbert LA, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013;154:442–51.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif