Metformin can mitigate skeletal dysplasia caused by Pck2 deficiency

Shah, H. N. et al. Craniofacial and long bone development in the context of distraction osteogenesis. Plast. Reconstr. Surg. 147, 54e–65e (2021).

PubMed  PubMed Central  Google Scholar 

Yadav, P. S. et al. Stat3 loss in mesenchymal progenitors causes Job syndrome-like skeletal defects by reducing Wnt/β-catenin signaling. Proc. Natl. Acad. Sci. USA 118, e2020100118 (2021).

Zhou, S. et al. STAT3 is critical for skeletal development and bone homeostasis by regulating osteogenesis. Nat. Commun. 12, 6891 (2021).

PubMed  PubMed Central  Google Scholar 

Kwon, E. K. et al. The role of Ellis-Van Creveld 2(EVC2) in mice during cranial bone development. Anat. Rec. (Hoboken) 301, 46–55 (2018).

Google Scholar 

Suzuki, A. et al. Role of metabolism in bone development and homeostasis. Int. J. Mol. Sci. 21, 8992 (2020).

Méndez-Lucas, A. et al. PEPCK-M expression in mouse liver potentiates, not replaces, PEPCK-C mediated gluconeogenesis. J. Hepatol. 59, 105–113 (2013).

PubMed  PubMed Central  Google Scholar 

Beale, E. G., Harvey, B. J. & Forest, C. PCK1 and PCK2 as candidate diabetes and obesity genes. Cell Biochem Biophys. 48, 89–95 (2007).

PubMed  Google Scholar 

Yu, S., Meng, S., Xiang, M. & Ma, H. Phosphoenolpyruvate carboxykinase in cell metabolism: Roles and mechanisms beyond gluconeogenesis. Mol. Metab. 53, 101257 (2021).

PubMed  PubMed Central  Google Scholar 

Li, Z. et al. Mitochondrial phosphoenolpyruvate carboxykinase regulates osteogenic differentiation by modulating AMPK/ULK1-dependent autophagy. Stem Cells 37, 1542–1555 (2019).

PubMed  Google Scholar 

Li, Z. et al. The PCK2-glycolysis axis assists three-dimensional-stiffness maintaining stem cell osteogenesis. Bioact. Mater. 18, 492–506 (2022).

PubMed  PubMed Central  Google Scholar 

Yan, W. & Li, X. Impact of diabetes and its treatments on skeletal diseases. Front. Med. 7, 81–90 (2013).

PubMed  Google Scholar 

Qin, W. et al. Novel calcium phosphate cement with metformin-laded chitosan for odontogenic differentiation of human dental pulp cells. Stem Cells Int. 2018, 7173481 (2018).

PubMed  PubMed Central  Google Scholar 

Wang, P. et al. Metformin induces osteoblastic differentiation of human induced pluripotent stem cell-derived mesenchymal stem cells. J. Tissue Eng. Regen. Med. 12, 437–446 (2018).

PubMed  Google Scholar 

McKenzie, J. et al. Osteocyte death and bone overgrowth in mice lacking fibroblast growth factor receptors 1 and 2 in mature osteoblasts and osteocytes. J. Bone Min. Res. 34, 1660–1675 (2019).

Google Scholar 

Carvalho, M. S., Cabral, J. M., da Silva, C. L. & Vashishth, D. Synergistic effect of extracellularly supplemented osteopontin and osteocalcin on stem cell proliferation, osteogenic differentiation, and angiogenic properties. J. Cell Biochem. 120, 6555–6569 (2019).

PubMed  Google Scholar 

Grasmann, G., Smolle, E., Olschewski, H. & Leithner, K. Gluconeogenesis in cancer cells - Repurposing of a starvation-induced metabolic pathway? Biochim Biophys. Acta Rev. Cancer 1872, 24–36 (2019).

PubMed  PubMed Central  Google Scholar 

Greenhill, C. Metabolism: Role of bone in glucose metabolism. Nat. Rev. Endocrinol. 14, 191 (2018).

PubMed  Google Scholar 

Lieben, L. & Callewaert, F. & Bouillon, R. Bone and metabolism: a complex crosstalk. Horm. Res. 71, 134–138 (2009).

PubMed  Google Scholar 

Puchalska, P. & Crawford, P. A. Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab. 25, 262–284 (2017).

PubMed  PubMed Central  Google Scholar 

Puchalska, P. & Crawford, P. A. Metabolic and signaling roles of ketone bodies in health and disease. Annu Rev. Nutr. 41, 49–77 (2021).

PubMed  PubMed Central  Google Scholar 

Williams, N. C. & O’Neill, L. A. J. A Role for the krebs cycle intermediate citrate in metabolic reprogramming in innate immunity and inflammation. Front Immunol. 9, 141 (2018).

PubMed  PubMed Central  Google Scholar 

Vincent, E. E. et al. Mitochondrial phosphoenolpyruvate carboxykinase regulates metabolic adaptation and enables glucose-independent tumor growth. Mol. Cell 60, 195–207 (2015).

PubMed  Google Scholar 

Gannon, N. P., Schnuck, J. K. & Vaughan, R. A. BCAA metabolism and insulin sensitivity - dysregulated by metabolic status? Mol. Nutr. Food Res. 62, e1700756 (2018).

PubMed  Google Scholar 

Zemdegs, J. et al. Metformin promotes anxiolytic and antidepressant-like responses in insulin-resistant mice by decreasing circulating branched-chain amino acids. J. Neurosci. 39, 5935–5948 (2019).

PubMed  PubMed Central  Google Scholar 

Das, V. et al. Early treatment with metformin in a mice model of complex regional pain syndrome reduces pain and edema. Anesth. Analg. 130, 525–534 (2020).

PubMed  Google Scholar 

Franks, E. M. et al. Intracranial and hierarchical perspective on dietary plasticity in mammals. Zool. (Jena.) 124, 30–41 (2017).

Google Scholar 

Thompson, K. D., Weiss-Bilka, H. E., McGough, E. B. & Ravosa, M. J. Bone up: craniomandibular development and hard-tissue biomineralization in neonate mice. Zool. (Jena.) 124, 51–60 (2017).

Google Scholar 

Blumer, M. J. F. Bone tissue and histological and molecular events during development of the long bones. Ann. Anat. 235, 151704 (2021).

PubMed  Google Scholar 

McCarthy, A. D., Cortizo, A. M. & Sedlinsky, C. Metformin revisited: Does this regulator of AMP-activated protein kinase secondarily affect bone metabolism and prevent diabetic osteopathy. World J. Diabetes 7, 122–133 (2016).

PubMed  PubMed Central  Google Scholar 

Duan, X., Bradbury, S. R., Olsen, B. R. & Berendsen, A. D. VEGF stimulates intramembranous bone formation during craniofacial skeletal development. Matrix Biol. 52-54, 127–140 (2016).

PubMed  PubMed Central  Google Scholar 

Robling, A. G. & Bonewald, L. F. The osteocyte: new insights. Annu Rev. Physiol. 82, 485–506 (2020).

PubMed  PubMed Central  Google Scholar 

Raggatt, L. J. & Partridge, N. C. Cellular and molecular mechanisms of bone remodeling. J. Biol. Chem. 285, 25103–25108 (2010).

PubMed  PubMed Central  Google Scholar 

Gkastaris, K. et al. Obesity, osteoporosis and bone metabolism. J. Musculoskelet. Neuronal Interact. 20, 372–381 (2020).

PubMed  PubMed Central  Google Scholar 

Jiang, Y. et al. Loss of Hilnc prevents diet-induced hepatic steatosis through binding of IGF2BP2. Nat. Metab. 3, 1569–1584 (2021).

PubMed  PubMed Central  Google Scholar 

Olswang, Y. et al. A mutation in the peroxisome proliferator-activated receptor gamma-binding site in the gene for the cytosolic form of phosphoenolpyruvate carboxykinase reduces adipose tissue size and fat content in mice. Proc. Natl. Acad. Sci. USA 99, 625–630 (2002).

PubMed  PubMed Central  Google Scholar 

Franckhauser, S. et al. Adipose overexpression of phosphoenolpyruvate carboxykinase leads to high susceptibility to diet-induced insulin resistance and obesity. Diabetes 55, 273–280 (2006).

PubMed  Google Scholar 

Franckhauser, S. et al. Increased fatty acid re-esterification by PEPCK overexpression in adipose tissue leads to obesity without insulin resistance. Diabetes 51, 624–630 (2002).

PubMed  Google Scholar 

Yang, M. & Vousden, K. H. Serine and one-carbon metabolism in cancer. Nat. Rev. Cancer 16, 650–662 (2016).

PubMed  Google Scholar 

Li, X. et al. Regulation of chromatin and gene expression by metabolic enzymes and metabolites. Nat. Rev. Mol. Cell Biol. 19, 563–578 (2018).

PubMed  PubMed Central  Google Scholar 

Newgard, C. B. et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 9, 311–326 (2009).

PubMed  PubMed Central  Google Scholar 

Mahendran, Y. et al. Genetic evidence of a causal effect of insulin resistance on branched-chain amino acid levels. Diabetologia 60, 873–878 (2017).

PubMed  Google Scholar 

Vriens, K. et al. Evidence for an alternative fatty acid desaturation pathway increasing cancer plasticity. Nature 566, 403–406 (2019).

PubMed  PubMed Central  Google Scholar 

Prentice, K. J. et al. The furan fatty acid metabolite CMPF is elevated in diabetes and induces β cell dysfunction. Cell Metab. 19, 653–666 (2014).

PubMed  Google Scholar 

Wang, Y. et al. Metformin improves mitochondrial respiratory activity through activation of AMPK. Cell Rep. 29, 1511–1523.e1515 (2019).

PubMed  PubMed Central  Google Scholar 

McCreight, L. J., Bailey, C. J. & Pearson, E. R. Metformin and the gastrointestinal tract. Diabetologia 59, 426–435 (2016).

PubMed  PubMed Central  Google Scholar 

Schommers, P. et al. Metformin causes a futile intestinal-hepatic cycle which increases energy expenditure and slows down development of a type 2 diabetes-like state. Mol. Metab. 6, 737–747 (2017).

PubMed  PubMed Central  Google Scholar 

Geerling, J. J. et al. Metformin lowers plasma triglycerides by promoting VLDL-triglyceride clearance by brown adipose tissue in mice. Diabetes 63, 880–891 (2014).

PubMed  Google Scholar 

Kim, E. K. et al. Metformin prevents fatty liver and improves balance of white/brown adipose in an obesity mouse model by inducing FGF21. Mediators Inflamm. 2016, 5813030 (2016).

PubMed  PubMed Central  Google Scholar 

Jiating, L., Buyun, J. & Yinchang, Z. Role of metformin on osteoblast differentiation in type 2 diabetes. Biomed. Res Int 2019, 9203934 (2019).

PubMed  PubMed Central  Google Scholar 

Baeza-Flores, G. D. C. et al. Metformin: a prospective alternative for the treatment of chronic pain. Front Pharm. 11, 558474 (2020).

Google Scholar 

Smieszek, A., Tomaszewski, K. A., Kornicka, K. & Marycz, K. Metformin promotes osteogenic differentiation of adipose-derived stromal cells and exerts pro-osteogenic Effect stimulating bone rgeneration. J. Clin. Med. 7, 482 (2018).

Qu, L. et al. Metformin-loaded nanospheres-laden photocrosslinkable gelatin hydrogel for bone tissue engineering. J. Mech. Behav. Biomed. Mater. 116, 104293 (2021).

PubMed  Google Scholar 

Jeyabalan, J., Sh

留言 (0)

沒有登入
gif