Tetrahedral framework nucleic acids/hyaluronic acid-methacrylic anhydride hybrid hydrogel with antimicrobial and anti-inflammatory properties for infected wound healing

Guo, H. Q. et al. Epidemiology of maxillofacial soft tissue injuries in an oral emergency department in Beijing: a two-year retrospective study. Dent. Traumatol. 37, 479–487 (2021).

Article  CAS  PubMed  Google Scholar 

Zhou, J. et al. Oral and maxillofacial emergencies: A retrospective study of 5220 cases in West China. Dent. Traumatol. 39, 140–146 (2023).

Article  PubMed  Google Scholar 

Guo, H. Q., Yang, X., Wang, X. T., Ji, A. P. & Bai, J. Risk Factors for Infection of Sutured Maxillofacial Soft Tissue Injuries. Surg. Infect. (Larchmt.) 23, 298–303 (2022).

Article  PubMed  Google Scholar 

Percival, S. L. et al. A review of the scientific evidence for biofilms in wounds. Wound Repair Regen. 20, 647–657 (2012).

Article  PubMed  Google Scholar 

Prompers, L. et al. High prevalence of ischaemia, infection and serious comorbidity in patients with diabetic foot disease in Europe. Baseline results from the Eurodiale study. Diabetologia 50, 18–25 (2007).

Article  CAS  PubMed  Google Scholar 

Juhasz, M. L. W. & Cohen, J. L. Microneedling for the treatment of scars: an update for clinicians. Clin. Cosmet. Investig. Dermatol. 13, 997–1003 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Deflorin, C. et al. Physical management of scar tissue: a systematic review and meta-analysis. J. Alter. Complement Med. 26, 854–865 (2020).

Article  Google Scholar 

Lee, M. R. & Paver, R. Prophylactic antibiotics in dermatological surgery. Australas. J. Dermatol. 57, 83–91 (2016).

Article  PubMed  Google Scholar 

Ciofu, O., Moser, C., Jensen, P. O. & Hoiby, N. Tolerance and resistance of microbial biofilms. Nat. Rev. Microbiol. 20, 621–635 (2022).

Article  CAS  PubMed  Google Scholar 

Kalelkar, P. P., Riddick, M. & Garcia, A. J. Biomaterial-based delivery of antimicrobial therapies for the treatment of bacterial infections. Nat. Rev. Mater. 7, 39–54 (2022).

Article  CAS  PubMed  Google Scholar 

Slaughter, B. V., Khurshid, S. S., Fisher, O. Z., Khademhosseini, A. & Peppas, N. A. Hydrogels in regenerative medicine. Adv. Mater. 21, 3307–3329 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eke, G., Mangir, N., Hasirci, N., MacNeil, S. & Hasirci, V. Development of a UV crosslinked biodegradable hydrogel containing adipose derived stem cells to promote vascularization for skin wounds and tissue engineering. Biomaterials 129, 188–198 (2017).

Article  CAS  PubMed  Google Scholar 

Li, Y. et al. Hyaluronic acid-methacrylic anhydride/polyhexamethylene biguanide hybrid hydrogel with antibacterial and proangiogenic functions for diabetic wound repair. Chin. Chem. Lett. 33, 5030–5034 (2022).

Article  CAS  Google Scholar 

Maloney, F. P. et al. Structure, substrate recognition and initiation of hyaluronan synthase. Nature 604, 195–201 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khetan, S. et al. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat. Mater. 12, 458–465 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mookherjee, N., Anderson, M. A., Haagsman, H. P. & Davidson, D. J. Antimicrobial host defence peptides: functions and clinical potential. Nat. Rev. Drug Discov. 19, 311–332 (2020).

Article  CAS  PubMed  Google Scholar 

Schneider, V. A. et al. Imaging the antimicrobial mechanism(s) of cathelicidin-2. Sci. Rep. 6, 32948 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hancock, R. E., Haney, E. F. & Gill, E. E. The immunology of host defence peptides: beyond antimicrobial activity. Nat. Rev. Immunol. 16, 321–334 (2016).

Article  CAS  PubMed  Google Scholar 

van der Does, A. M., Hiemstra, P. S. & Mookherjee, N. Antimicrobial host defence peptides: immunomodulatory functions and translational prospects. Adv. Exp. Med. Biol. 1117, 149–171 (2019).

Article  PubMed  Google Scholar 

Pezzulo, A. A. et al. Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung. Nature 487, 109–113 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mallia, P. et al. Rhinovirus infection induces degradation of antimicrobial peptides and secondary bacterial infection in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 186, 1117–1124 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pachon-Ibanez, M. E., Smani, Y., Pachon, J. & Sanchez-Cespedes, J. Perspectives for clinical use of engineered human host defense antimicrobial peptides. FEMS Microbiol. Rev. 41, 323–342 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harmouche, N. et al. Solution and solid-state nuclear magnetic resonance structural investigations of the antimicrobial designer peptide GL13K in membranes. Biochemistry 56, 4269–4278 (2017).

Article  CAS  PubMed  Google Scholar 

Li, T. et al. Antibacterial activity and cytocompatibility of an implant coating consisting of TiO(2) nanotubes combined with a GL13K antimicrobial peptide. Int J. Nanomed. 12, 2995–3007 (2017).

Article  CAS  Google Scholar 

Liu, Y. et al. Tetrahedral framework nucleic acids deliver antimicrobial peptides with improved effects and less susceptibility to bacterial degradation. Nano Lett. 20, 3602–3610 (2020).

Article  CAS  PubMed  Google Scholar 

Gera, S., Kankuri, E. & Kogermann, K. Antimicrobial peptides–unleashing their therapeutic potential using nanotechnology. Pharmacol. Ther. 232, 107990 (2022).

Article  CAS  PubMed  Google Scholar 

Rajchakit, U. et al. Size-controlled synthesis of gold nanoparticles tethering antimicrobial peptides with potent broad-spectrum antimicrobial and antibiofilm activities. Mol. Pharm. 21, 596–608 (2024).

Article  CAS  PubMed  Google Scholar 

Maisetta, G., Brancatisano, F. L., Esin, S., Campa, M. & Batoni, G. Gingipains produced by Porphyromonas gingivalis ATCC49417 degrade human-beta-defensin 3 and affect peptide’s antibacterial activity in vitro. Peptides 32, 1073–1077 (2011).

Article  CAS  PubMed  Google Scholar 

Li, S., Tian, T., Zhang, T., Cai, X. & Lin, Y. Advances in biological applications of self-assembled DNA tetrahedral nanostructures. Mater. Today 24, 57–68 (2019).

Article  CAS  Google Scholar 

Zhang, T., Tian, T. & Lin, Y. Functionalizing framework nucleic-acid-based nanostructures for biomedical application. Adv. Mater. 34, e2107820 (2022).

Article  PubMed  Google Scholar 

Zhang, Q. et al. Anti-inflammatory and antioxidative effects of tetrahedral DNA nanostructures via the modulation of macrophage responses. ACS Appl. Mater. Interfaces 10, 3421–3430 (2018).

Article  CAS  PubMed  Google Scholar 

Wiraja, C. et al. Framework nucleic acids as programmable carrier for transdermal drug delivery. Nat. Commun. 10, 1147 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Tian, T. et al. A dynamic DNA tetrahedron framework for active targeting. Nat. Protoc. 18, 1028–1055 (2023).

Article  CAS  PubMed  Google Scholar 

Tian, T., Li, Y. & Lin, Y. Prospects and challenges of dynamic DNA nanostructures in biomedical applications. Bone Res. 10, 40 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, B. et al. Facilitating in situ tumor imaging with a tetrahedral DNA framework‐enhanced hybridization chain reaction probe. Adv. Funct. Mater. 32, 2109728 (2022).

Article  CAS  Google Scholar 

Zhu, J. et al. Tetrahedral framework nucleic acids promote scarless healing of cutaneous wounds via the AKT-signaling pathway. Signal Transduct. Target Ther. 5, 120 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eming, S. A., Martin, P. & Tomic-Canic, M. Wound repair and regeneration: mechanisms, signaling, and translation. Sci. Transl. Med. 6, 265sr266–265sr266 (2014).

Article  Google Scholar 

Meng, Y. et al. Reactive metal boride nanoparticles trap lipopolysaccharide and peptidoglycan for bacteria-infected wound healing. Nat. Commun. 13, 7353 (2022).

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif