Advances in regenerative medicine applications of tetrahedral framework nucleic acid-based nanomaterials: an expert consensus recommendation

Watson, J. D. & Crick, F. H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).

Article  PubMed  Google Scholar 

Broker, T. R. & Lehman, I. R. Branched DNA molecules: intermediates in T4 recombination. J. Mol. Biol. 60, 131–149 (1971).

Article  PubMed  Google Scholar 

Jones, M. R., Seeman, N. C. & Mirkin, C. A. Nanomaterials. Programmable materials and the nature of the DNA bond. Science 347, 1260901 (2015).

Article  PubMed  Google Scholar 

Winfree, E., Liu, F., Wenzler, L. A. & Seeman, N. C. Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998).

Article  PubMed  Google Scholar 

Massich, M. D. et al. Regulating immune response using polyvalent nucleic acid-gold nanoparticle conjugates. Mol. Pharm. 6, 1934–1940 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Chiu, Y. T. E., Li, H. & Choi, C. H. J. Progress toward understanding the interactions between DNA nanostructures and the cell. Small 15, e1805416 (2019).

Article  PubMed  Google Scholar 

Perrault, S. D. & Shih, W. M. Virus-inspired membrane encapsulation of DNA nanostructures to achieve in vivo stability. ACS Nano 8, 5132–5140 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Ponnuswamy, N. et al. Oligolysine-based coating protects DNA nanostructures from low-salt denaturation and nuclease degradation. Nat. Commun. 8, 15654 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Agarwal, N. P., Matthies, M., Gur, F. N., Osada, K. & Schmidt, T. L. Block copolymer micellization as a protection strategy for DNA origami. Angew. Chem. Int Ed. Engl. 56, 5460–5464 (2017).

Article  PubMed  Google Scholar 

Rothemund, P. W. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

Article  PubMed  Google Scholar 

Chen, J. H. & Seeman, N. C. Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350, 631–633 (1991).

Article  PubMed  Google Scholar 

Shih, W. M., Quispe, J. D. & Joyce, G. F. A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature 427, 618–621 (2004).

Article  PubMed  Google Scholar 

Goodman, R. P. et al. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310, 1661–1665 (2005).

Article  PubMed  Google Scholar 

Frank-Kamenetskii, M. D. & Mirkin, S. M. Triplex DNA structures. Annu. Rev. Biochem. 64, 65–95 (1995).

Article  PubMed  Google Scholar 

Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Han, D. et al. DNA origami with complex curvatures in three-dimensional space. Science 332, 342–346 (2011).

Article  PubMed  Google Scholar 

Fu, J., Liu, M., Liu, Y. & Yan, H. Spatially-interactive biomolecular networks organized by nucleic acid nanostructures. Acc. Chem. Res. 45, 1215–1226 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Wang, X. et al. Paranemic crossover DNA: there and back again. Chem. Rev. 119, 6273–6289 (2019).

Article  PubMed  Google Scholar 

Loescher, S., Groeer, S. & Walther, A. 3D DNA origami nanoparticles: from basic design principles to emerging applications in soft matter and (bio-)nanosciences. Angew. Chem. Int Ed. Engl. 57, 10436–10448 (2018).

Article  PubMed  Google Scholar 

Hong, F., Zhang, F., Liu, Y. & Yan, H. DNA origami: scaffolds for creating higher order structures. Chem. Rev. 117, 12584–12640 (2017).

Article  PubMed  Google Scholar 

Torring, T., Voigt, N. V., Nangreave, J., Yan, H. & Gothelf, K. V. DNA origami: a quantum leap for self-assembly of complex structures. Chem. Soc. Rev. 40, 5636–5646 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Rosi, N. L. et al. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312, 1027–1030 (2006).

Article  PubMed  Google Scholar 

Juul, S. et al. Temperature-controlled encapsulation and release of an active enzyme in the cavity of a self-assembled DNA nanocage. ACS Nano 7, 9724–9734 (2013).

Article  PubMed  Google Scholar 

Yu, Z., Li, N., Zheng, P., Pan, W. & Tang, B. Temperature-responsive DNA-gated nanocarriers for intracellular controlled release. Chem. Commun. 50, 3494–3497 (2014).

Article  Google Scholar 

Elbaz, J., Wang, F., Remacle, F. & Willner, I. pH-programmable DNA logic arrays powered by modular DNAzyme libraries. Nano Lett. 12, 6049–6054 (2012).

Article  PubMed  Google Scholar 

Liu, Z., Li, Y., Tian, C. & Mao, C. A smart DNA tetrahedron that isothermally assembles or dissociates in response to the solution pH value changes. Biomacromolecules 14, 1711–1714 (2013).

Article  PubMed  Google Scholar 

Idili, A., Vallee-Belisle, A. & Ricci, F. Programmable pH-triggered DNA nanoswitches. J. Am. Chem. Soc. 136, 5836–5839 (2014).

Article  PubMed  Google Scholar 

Yao, D. et al. A pH-responsive DNA nanomachine-controlled catalytic assembly of gold nanoparticles. Chem. Commun. 52, 7556–7559 (2016).

Article  Google Scholar 

Porchetta, A., Vallee-Belisle, A., Plaxco, K. W. & Ricci, F. Allosterically tunable, DNA-based switches triggered by heavy metals. J. Am. Chem. Soc. 135, 13238–13241 (2013).

Article  PubMed  Google Scholar 

Aizen, R. et al. G-quadruplex-stimulated optical and electrocatalytic DNA switches. Small 11, 3654–3658 (2015).

Article  PubMed  Google Scholar 

Ge, B., Huang, Y. C., Sen, D. & Yu, H. Z. A robust electronic switch made of immobilized duplex/quadruplex. DNA. Angew. Chem. Int. Ed. Engl. 49, 9965–9967 (2010).

Article  PubMed  Google Scholar 

Xu, W., Deng, R., Wang, L. & Li, J. Multiresponsive rolling circle amplification for DNA logic gates mediated by endonuclease. Anal. Chem. 86, 7813–7818 (2014).

Article  PubMed  Google Scholar 

Banerjee, A. et al. Controlled release of encapsulated cargo from a DNA icosahedron using a chemical trigger. Angew. Chem. Int. Ed. Engl. 52, 6854–6857 (2013).

Article  PubMed  Google Scholar 

Pei, H. et al. Reconfigurable three-dimensional DNA nanostructures for the construction of intracellular logic sensors. Angew. Chem. Int Ed. Engl. 51, 9020–9024 (2012).

Article  PubMed  Google Scholar 

Zhu, J., Li, T., Zhang, L., Dong, S. & Wang, E. G-quadruplex DNAzyme based molecular catalytic beacon for label-free colorimetric logic gates. Biomaterials 32, 7318–7324 (2011).

Article  PubMed  Google Scholar 

Lo, P. K. et al. Loading and selective release of cargo in DNA nanotubes with longitudinal variation. Nat. Chem. 2, 319–328 (2010).

Article  PubMed  Google Scholar 

Andersen, E. S. et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459, 73–76 (2009).

Article  PubMed  Google Scholar 

Goodman, R. P. et al. Reconfigurable, braced, three-dimensional DNA nanostructures. Nat. Nanotechnol. 3, 93–96 (2008).

Article  PubMed  Google Scholar 

Wang, Y., Santos, A., Evdokiou, A. & Losic, D. An overview of nanotoxicity and nanomedicine research: principles, progress and implications for cancer therapy. J. Mater. Chem. B 3, 7153–7172 (2015).

Article  PubMed  Google Scholar 

Khanna, P., Ong, C., Bay, B. H. & Baeg, G. H. Nanotoxicity: an interplay of oxidative stress, inflammation and cell death. Nanomaterials (Basel) 5, 1163–1180 (2015).

Article  Google Scholar 

Fischer, H. C. & Chan, W. C. Nanotoxicity: the growing need for in vivo study. Curr. Opin. Biotechnol. 18, 565–571 (2007).

Article  PubMed  Google Scholar 

Inal, S., Rivnay, J., Suiu, A. O., Malliaras, G. G. & McCulloch, I. Conjugated polymers in bioelectronics. Acc. Chem. Res. 51, 1368–1376 (2018).

Article  PubMed  Google Scholar 

Seeman, N. C. Nucleic acid junctions and lattices. J. Theor. Biol. 99, 237–247 (1982).

Article  PubMed  Google Scholar 

Seeman, N. C. An overview of structural DNA nanotechnology. Mol. Biotechnol. 37, 246–257 (2007).

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif