Mesoporous silica coated SPIONs containing curcumin and silymarin intended for breast cancer therapy

Khafaji M, Vossoughi M, Hormozi-Nezhad MR, Dinarvand R, Börrnert F, Irajizad A. A new bifunctional hybrid nanostructure as an active platform for photothermal therapy and MR imaging. Sci Rep. 2016;6:27847.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Foglia S, Ledda M, Fioretti D, Iucci G, Papi M, Capellini G, Lolli MG, Grimaldi S, Rinaldi M, Lisi A. In vitro biocompatibility study of sub-5 nm silica-coated magnetic iron oxide fluorescent nanoparticles for potential biomedical application. Sci Rep. 2017;7:46513.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Li X, Wang L, Fan Y, Feng Q, Cui F-z. Biocompatibility and toxicity of nanoparticles and nanotubes. J Nanomater. 2012;2012:6.

Google Scholar 

Müller K, Skepper JN, Posfai M, Trivedi R, Howarth S, Corot C, Lancelot E, Thompson PW, Brown AP, Gillard JH. Effect of ultrasmall superparamagnetic iron oxide nanoparticles (Ferumoxtran-10) on human monocyte-macrophages in vitro. Biomaterials. 2007;28(9):1629–42.

PubMed  Article  Google Scholar 

Azhdarzadeh M, Atyabi F, Saei AA, Varnamkhasti BS, Omidi Y, Fateh M, Ghavami M, Shanehsazzadeh S, Dinarvand R. Theranostic MUC-1 aptamer targeted gold coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging and photothermal therapy of colon cancer. Colloids Surf B. 2016;143:224–32.

CAS  Article  Google Scholar 

Cao X, Deng W-W, Fu M, Wang L, Tong S-S, Wei Y-W, Xu Y, Su W-Y, Xu X-M, Yu J-N. In vitro release and in vitro-in vivo correlation for silybin meglumine incorporated into hollow-type mesoporous silica nanoparticles. Int J Nanomedicine. 2012;7:753–62.

CAS  PubMed  PubMed Central  Google Scholar 

Mahmoudi M, Sant S, Wang B, Laurent S, Sen T. Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev. 2011;63(1):24–46.

CAS  PubMed  Article  Google Scholar 

Chin SF, Iyer KS, Saunders M, St Pierre TG, Buckley C, Paskevicius M, Raston CL. Encapsulation and sustained release of curcumin using superparamagnetic silica reservoirs. Chem Eur J. 2009;15(23):5661–5.

CAS  PubMed  Article  Google Scholar 

Jurenka JS. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern Med Rev. 2009;14(2):141–53.

Shishodia S. Molecular mechanisms of curcumin action: gene expression. BioFactors. 2013;39(1):37–55.

CAS  PubMed  Article  Google Scholar 

Salem M, Rohani S, Gillies ER. Curcumin, a promising anti-cancer therapeutic: a review of its chemical properties, bioactivity and approaches to cancer cell delivery. RSC Adv. 2014;4(21):10815–29.

CAS  Article  Google Scholar 

Lin CH, Lee WL, Shyur LF. An overview of the current development of phytoremedies for breast cancer. In: Cho W, editor. Materia medica for various cancers. Evidence-based anticancer complementary and alternative medicine, vol 2. Dordrecht: Springer; 2012. https://doi.org/10.1007/978-94-007-1983-5_3.

Shehzad A, Lee J, Lee YS. Curcumin in various cancers. BioFactors. 2013;39(1):56–68.

CAS  PubMed  Article  Google Scholar 

Aggarwal BB, Surh Y-J, Shishodia S, editors. The molecular targets and therapeutic uses of curcumin in health and disease, vol 495. Springer Science & Business Media; 2007. p. 197–212.

Kadoglou NP, Panayiotou C, Vardas M, Balaskas N, Kostomitsopoulos NG, Tsaroucha AK, Valsami G. A comprehensive review of the cardiovascular protective properties of Silibinin/Silymarin: A new kid on the block. Pharmaceuticals. 2022;15(5):538.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Rastegar H, Ashtiani HA, Anjarani S, Bokaee S, Khaki A, Javadi L. The role of milk thistle extract in breast carcinoma cell line (MCF-7) apoptosis with doxorubicin. Acta Med Iran. 2013;51(9):591.

PubMed  Google Scholar 

Bayram D, Çetin E, Kara M, Özgöçmen M, Candan I. The apoptotic effects of silibinin on MDA-MB-231 and MCF-7 human breast carcinoma cells. Hum Exp Toxicol. 2017;36(6):573–86.

CAS  PubMed  Article  Google Scholar 

Chung SY, Sung MK, Kim NH, Jang JO, Go EJ, Lee HJ. Inhibition of P-glycoprotein by natural products in human breast cancer cells. Arch Pharmacal Res. 2005;28(7):823–8.

CAS  Article  Google Scholar 

Provinciali M, Papalini F, Orlando F, Pierpaoli S, Donnini A, Morazzoni P, Riva A, Smorlesi A. Effect of the silybin-phosphatidylcholine complex (IdB 1016) on the development of mammary tumors in HER-2/neu transgenic mice. Can Res. 2007;67(5):2022–9.

CAS  Article  Google Scholar 

Dutta S, Mahalanobish S, Saha S, Ghosh S, Sil PC. Natural products: An upcoming therapeutic approach to cancer. Food Chem Toxicol. 2019;128:240–55.

CAS  PubMed  Article  Google Scholar 

Jiang K, Wang W, Jin X, Wang Z, Ji Z, Meng G. Silibinin, a natural flavonoid, induces autophagy via ROS-dependent mitochondrial dysfunction and loss of ATP involving BNIP3 in human MCF7 breast cancer cells. Oncol Rep. 2015;33(6):2711–8.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Aubery C, Solans C, Prevost S, Gradzielski M, Sanchez-Dominguez M. Microemulsions as reaction media for the synthesis of mixed oxide nanoparticles: relationships between microemulsion structure, reactivity, and nanoparticle characteristics. Langmuir. 2013;29(6):1779–89.

CAS  PubMed  Article  Google Scholar 

Okoli C, Sanchez-Dominguez M, Boutonnet M, Järås S, Civera C, Solans C, Kuttuva GR. Comparison and functionalization study of microemulsion-prepared magnetic iron oxide nanoparticles. Langmuir. 2012;28(22):8479–85.

CAS  PubMed  Article  Google Scholar 

Linssen T, Cassiers K, Cool P, Vansant E. Mesoporous templated silicates: an overview of their synthesis, catalytic activation and evaluation of the stability. Adv Coll Interface Sci. 2003;103(2):121–47.

CAS  Article  Google Scholar 

Suteewong T, Sai H, Cohen R, Wang S, Bradbury M, Baird B, Gruner SM, Wiesner U. Highly aminated mesoporous silica nanoparticles with cubic pore structure. J Am Chem Soc. 2010;133(2):172–5.

PubMed  PubMed Central  Article  Google Scholar 

Qiao Z-A, Zhang L, Guo M, Liu Y, Huo Q. Synthesis of mesoporous silica nanoparticles via controlled hydrolysis and condensation of silicon alkoxide. Chem Mater. 2009;21(16):3823–9.

CAS  Article  Google Scholar 

Suteewong T, Sai H, Lee J, Bradbury M, Hyeon T, Gruner SM, Wiesner U. Ordered mesoporous silica nanoparticles with and without embedded iron oxide nanoparticles: structure evolution during synthesis. J Mater Chem. 2010;20(36):7807–14.

CAS  Article  Google Scholar 

Zhang M, Wu Y, Feng X, He X, Chen L, Zhang Y. Fabrication of mesoporous silica-coated CNTs and application in size-selective protein separation. J Mater Chem. 2010;20(28):5835–42.

CAS  Article  Google Scholar 

Kwon S, Singh RK, Perez RA, Neel EAA, Kim H-W, Chrzanowski W. Silica-based mesoporous nanoparticles for controlled drug delivery. J Tissue Eng. 2013;4:2041731413503357.

PubMed  PubMed Central  Article  Google Scholar 

Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, Tamanoi F, Zink JI. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano. 2008;2(5):889–96.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Liong M, France B, Bradley KA, Zink JI. Antimicrobial activity of silver nanocrystals encapsulated in mesoporous silica nanoparticles. Adv Mater. 2009;21(17):1684–9.

CAS  Article  Google Scholar 

Wallace SJ, Li J, Nation RL, Boyd BJ. Drug release from nanomedicines: selection of appropriate encapsulation and release methodology. Drug Deliv Transl Res. 2012;2(4):284–92.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Jabr-Milane LS. Tumor hypoxia, the Warburg effect, and multidrug resistance: Modulation of hypoxia induced MDR using EGFR-targeted polymer blend nanocarriers for combination paclitaxel/lonidamine therapy. PhD diss., Northeastern University, 2010.

Pan K, Luo Y, Gan Y, Baek SJ, Zhong Q. pH-driven encapsulation of curcumin in self-assembled casein nanoparticles for enhanced dispersibility and bioactivity. Soft Matter. 2014;10(35):6820–30.

CAS  PubMed  Article  Google Scholar 

Wang Y-J, Pan M-H, Cheng A-L, Lin L-I, Ho Y-S, Hsieh C-Y, Lin J-K. Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharm Biomed Anal. 1997;15(12):1867–76.

CAS  PubMed  Article  Google Scholar 

Chen X, Zou L-Q, Niu J, Liu W, Peng S-F, Liu C-M. The stability, sustained release and cellular antioxidant activity of curcumin nanoliposomes. Molecules. 2015;20(8):14293–311.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Varnamkhasti BS, Hosseinzadeh H, Azhdarzadeh M, Vafaei SY, Esfandyari-Manesh M, Mirzaie ZH, Amini M, Ostad SN, Atyabi F, Dinarvand R. Protein corona hampers targeting potential of MUC1 aptamer functionalized SN-38 core–shell nanoparticles. Int J Pharm. 2015;494(1):430–44.

CAS  PubMed  Article  Google Scholar 

Cabana L, Bourgognon M, Wang JTW, Protti A, Klippstein R, de Rosales R, Shah AM, Fontcuberta J, Tobías-Rossell E, Sosabowski JK. The shortening of MWNT-SPION hybrids by steam treatment improves their magnetic resonance imaging properties in vitro and in vivo. Small. 2016;12(21):2893–905.

CAS  PubMed  Article  Google Scholar 

Rahman S, Telny T, Ravi T, Kuppusamy S. Role of surfactant and pH in dissolution of curcumin. Indian J Pharm Sci. 2009;71(2):139.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bafkary R, Khoee S. Carbon nanotube-based stimuli-responsive nanocarriers for drug delivery. RSC Adv. 2016;6(86):82553–65.

CAS  Article 

留言 (0)

沒有登入
gif