Antimicrobial activity and mechanism of anti-MRSA of phloroglucinol derivatives

Allemani C, Matsuda T, Di Carlo V, et al. Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet. 2018;391(10125):1023–75. https://doi.org/10.1016/S0140-6736(17)33326-3.

Article  PubMed  PubMed Central  Google Scholar 

Fisher RA, Gollan B, Helaine S. Persistent bacterial infections and persister cells. Nat Rev Microbiol. 2017;15(8):453–64. https://doi.org/10.1038/nrmicro.2017.42.

Article  PubMed  CAS  Google Scholar 

Fernández J, Gustot T. Management of bacterial infections in cirrhosis. J Hepatol. 2012;56(Suppl 1):S1-12. https://doi.org/10.1016/S0168-8278(12)60002-6.

Article  PubMed  CAS  Google Scholar 

Hassoun A, Linden PK, Friedman B. Incidence, prevalence, and management of MRSA bacteremia across patient populations—a review of recent developments in MRSA management and treatment. Crit Care. 2017;21(1):211. https://doi.org/10.1186/s13054-017-1801-3.

Article  PubMed  PubMed Central  Google Scholar 

Peacock SJ, Paterson GK. Mechanisms of Methicillin Resistance in Staphylococcus aureus. Annu Rev Biochem. 2015;84:577–601. https://doi.org/10.1146/annurev-biochem-060614-034516.

Article  PubMed  CAS  Google Scholar 

Lakhundi S, Zhang K. Methicillin-Resistant Staphylococcus aureus: Molecular Characterization, Evolution, and Epidemiology. Clin Microbiol Rev. 2018;31(4):e00020-e118. https://doi.org/10.1128/cmr.00020-18.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Santajit S, Indrawattana N. Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens. Biomed Res Int. 2016;2016:2475067. https://doi.org/10.1155/2016/2475067.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mun SH, Kang OH, Kong R, et al. Punicalagin suppresses methicillin resistance of Staphylococcus aureus to oxacillin. J Pharmacol Sci. 2018;137(4):317–23. https://doi.org/10.1016/j.jphs.2017.10.008.

Article  PubMed  CAS  Google Scholar 

Kitahara T, Aoyama Y, Hirakata Y, et al. In vitro activity of lauric acid or myristylamine in combination with six antimicrobial agents against methicillin-resistant Staphylococcus aureus (MRSA). Int J Antimicrob Agents. 2006;27(1):51–7. https://doi.org/10.1016/j.ijantimicag.2005.08.020.

Article  PubMed  CAS  Google Scholar 

Heilmann J, Winkelmann K, Sticher O. Studies on the antioxidative activity of phloroglucinol derivatives isolated from hypericum species. Planta Med. 2003;69:202–6. https://doi.org/10.1055/s-2003-38477.

Article  PubMed  CAS  Google Scholar 

Liu HX, Tan HB, Qiu SX. Antimicrobial acylphloroglucinols from the leaves of Rhodomyrtus tomentosa. J Asian Nat Prod Res. 2016;18(6):535–41. https://doi.org/10.1080/10286020.2015.1121997.

Article  PubMed  CAS  Google Scholar 

Hua X, Yang Q, Zhang W, et al. Antibacterial Activity and Mechanism of Action of Aspidinol Against Multi-Drug-Resistant Methicillin-Resistant Staphylococcus aureus. Front Pharmacol. 2018;9:619. https://doi.org/10.3389/fphar.2018.00619.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Jacob MR, Walker LA. Natural Products and Antifungal Drug Discovery. Methods Mol Med. 2005;118:83–109. https://doi.org/10.1385/1-59259-943-5:083.

Article  PubMed  CAS  Google Scholar 

Liu X, Liu J, Jiang T, et al. Analysis of chemical composition and in vitro antidermatophyte activity of ethanol extracts of Dryopteris fragrans (L.) Schot. J Ethnopharmacol. 2018;226:36–43. https://doi.org/10.1016/j.jep.2018.07.030.

Article  PubMed  CAS  Google Scholar 

Lin H, Liu X, Shen Z, et al. The effect of isoflavaspidic acid PB extracted from Dryopteris fragrans (L.) Schott on planktonic and biofilm growth of dermatophytes and the possible mechanism of antibiofilm. J Ethnopharmacol. 2019;241:111956. https://doi.org/10.1016/j.jep.2019.111956.

Article  PubMed  CAS  Google Scholar 

Chen NH, Qian YR, Li W, et al. Six New Acylphloroglucinols from Dryopteris championii. Chem Biodivers. 2017;14(7). https://doi.org/10.1002/cbdv.201700001.

Shi PQ. Synthesis and biological activity of fumaric acid and bleomycin compounds. Guangdong Pharmaceutical University, 2021. https://kns.cnki.net/kcms2/article/abstract?v=DxGmxfxkPoFSIbnUFVn3ilTx0dtlcyC6be1__idNCGuT7W_idJd7DmmoNLpvFY1NpVWL-wKzdNMCq8PfttMbVliNyzYRnA31Np0VuxhM16c5Umrxt_71o_PD03tIHKqa-O5n3KPc2CY=&uniplatform=NZKPT&language=CHS.

Liu HY, Du WZ, et al. Study on quality standard of Dryopteris fragrans. J Guangdong Pharmaceutical University. 2016;32(1):36–40 (https://kns.cnki.net/kcms/detail/44.1413.r.20160115.1840.011.html).

CAS  Google Scholar 

Fan HQ, Shen ZB, et al. Research progress on chemical constituents of Dryopteris fragrans and their pharmacological effects in the treatment of skin diseases. Shizhen Guoyi Guoyao. 2013;24(1):199–201 (https://kns.cnki.net/kcms2/article/abstract?v=DxGmxfxkPoHR57lvp9bMq3AwUERnn-OEMwP-504UoehrJOUGtE0HihfiKGC4bbl2GgxnxwhsTzDmiu7SHPIwrPj7Z5Zq0seoIvfU_GrbMZsFD62MVYXYEptJeqThfl1Y&uniplatform=NZKPT&language=CHS).

CAS  Google Scholar 

Rahman MM, Shiu WKP, Gibbons S, et al. Total synthesis of acylphloroglucinols and their antibacterial activities against clinical isolates of multi-drug resistant (MDR) and methicillin-resistant strains of Staphylococcus aureus. Eur J Med Chem. 2018;155:255–62. https://doi.org/10.1016/j.ejmech.2018.05.038.

Article  PubMed  CAS  Google Scholar 

Feng L, Maddox MM, Alam MZ, et al. Synthesis, structure-activity relationship studies, and antibacterial evaluation of 4-chromanones and chalcones, as well as olympicin A and derivatives. J Med Chem. 2014;57(20):8398–420. https://doi.org/10.1021/jm500853v.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kahlmeter G, Giske CG, Kirn TJ, et al. Point-Counterpoint: Differences between the European Committee on Antimicrobial Susceptibility Testing and Clinical and Laboratory Standards Institute Recommendations for Reporting Antimicrobial Susceptibility Results. J Clin Microbiol. 2019;57(9):e01129-e1219. https://doi.org/10.1128/JCM.01129-19.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhang S, Qu X, Jiao J, et al. Felodipine enhances aminoglycosides efficacy against implant infections caused by methicillin-resistant Staphylococcus aureus, persisters and bi ofilms. Bioactive Mater. 2022;14:272–89. https://doi.org/10.1016/j.bioactmat.2021.11.019.

Article  CAS  Google Scholar 

Sun K, Metzger DW. Influenza infection suppresses NADPH oxidase-dependent phagocytic bacterial clearance and enhances susceptibility to secondary methicillin-resistant Staphylococcus aureus infection. J Immunol. 2014;192(7):3301–7. https://doi.org/10.4049/jimmunol.1303049.

Article  PubMed  CAS  Google Scholar 

Thanh ND, Giang NTK, Quyen TH, et al. Synthesis and evaluation of in vivo antioxidant, in vitro antibacterial, MRSA and antifungal activity of novel substituted isatin N-(2,3,4,6-tetra-O-acetyl-beta-d-glucopyranosyl) thiosemicarbazones. Eur J Med Chem. 2016;123:532–43. https://doi.org/10.1016/j.ejmech.2016.07.074.

Article  PubMed  CAS  Google Scholar 

Pramanik A, Laha D, Bhattacharya D, et al. A novel study of antibacterial activity of copper iodide nanoparticle mediated by DNA and membrane damage. Colloids Surf B Biointerf. 2012;96:50–5. https://doi.org/10.1016/j.colsurfb.2012.03.021.

Article  CAS  Google Scholar 

Helmerhorst EJ, Troxler RF, Oppenheim FG. The human salivary peptide histatin 5 exerts its antifungal activity through the formation of reactive oxygen species. Proc Natl Acad Sci U S A. 2001;98:14637–42. https://doi.org/10.1073/pnas.141366998.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhao C, Wang X, Wu L, et al. Nitrogen-doped carbon quantum dots as an antimicrobial agent against Staphylococcus for the treatment of infected wounds. Colloids Surf B Biointerf. 2019;179:17–27. https://doi.org/10.1016/j.colsurfb.2019.03.042.

Article  CAS  Google Scholar 

Clinical and Laboratory Standards Institute (CLSI). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard, Ninth Edition (M07-A9). Wayne, PA: CLSI; 2012a.

Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard, Eleventh Edition (M02-A11). Wayne, PA: CLSI; 2012b.

Wu JW, Li BL, Tang C, et al. Callistemonols A and B, Potent Antimicrobial Acylphloroglucinol Derivatives with Unusual Carbon Skeletons from Callistemon viminalis. J Nat Prod. 2019;82(7):1917–22. https://doi.org/10.1021/acs.jnatprod.9b00064.

Article  PubMed  CAS  Google Scholar 

Xiang YQ, Liu HX, Zhao LY, et al. Callistemenonone A, a novel dearomatic dibenzofuran-type acylphloroglucinol with antimicrobial activity from Callistemon viminalis. Sci Rep. 2017;7(1):2363. https://doi.org/10.1038/s41598-017-02441-5.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Li N, Gao C, Peng X, et al. Aspidin BB, a phloroglucinol derivative, exerts its antibacterial activity against Staphylococcus aureus by inducing the generation of reactive oxygen species. Res Microbiol. 2014;165(4):263–72. https://doi.org/10.1016/j.resmic.2014.03.002.

Article  PubMed  CAS  Google Scholar 

Gao C, Guo N, Li N, et al. Investigation of antibacterial activity of aspidin BB against Propionibacterium acnes. Arch Dermatol Res. 2016;308(2):79–86. https://doi.org/10.1007/s00403-015-1603-x.

Article  PubMed  CAS  Google Scholar 

Yang L, Mih N, Anand A, et al. Cellular responses to reactive oxygen species are predicted from molecular mechanisms. Proc Natl Acad Sci U S A. 2019;116:14368–73. https://doi.org/10.1073/pnas.1905039116.

Article  PubMed  PubMed Central  CAS 

留言 (0)

沒有登入
gif