Freeze-drying of bupivacaine lipospheres: preparation, characterization, and evaluation of anti-microbial properties

Myers R, et al. Sedation and Analgesia for Dressing Change: a survey of American Burn Association Burn Centers. J Burn Care Res. 2017;38(1):e48–54.

Article  MathSciNet  PubMed  Google Scholar 

Hernandez JL, et al. Use of continuous local anesthetic infusion in the management of postoperative split-thickness skin graft donor site pain. J Burn Care Res. 2013;34(4):e257-262.

Article  PubMed  Google Scholar 

Jellish WS, et al. Effect of topical local anesthetic application to skin harvest sites for pain management in burn patients undergoing skin-grafting procedures. Ann Surg. 1999;229(1):115–20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Desai C, et al. Effectiveness of a topical local anaesthetic spray as analgesia for dressing changes: a double-blinded randomised pilot trial comparing an emulsion with an aqueous lidocaine formulation. Burns. 2014;40(1):106–12.

Article  PubMed  Google Scholar 

Toongsuwan S, et al. Formulation and characterization of bupivacaine lipospheres. Int J Pharm. 2004;280(1):57–65.

Article  CAS  PubMed  Google Scholar 

Malinovsky JM, et al. Motor and blood pressure effects of epidural sustained-release bupivacaine from Polymer microspheres: a dose-response study in rabbits. Anesth Analg. 1995;81(3):519–24.

CAS  PubMed  Google Scholar 

Kopacz DJ et al. A model to evaluate the pharmacokinetic and pharmacodynamic variables of extended-release products using in vivo tissue microdialysis in humans: bupivacaine-loaded microcapsules. Anesth Analg. 2003;97(1):124 − 31. table of contents.

Masters DB, Domb AJ. Liposphere local anesthetic timed-release for perineural site application. Pharm Res. 1998;15(7):1038–45.

Article  CAS  PubMed  Google Scholar 

Chime SA, et al. Sustained-release diclofenac potassium-loaded solid lipid microparticle based on solidified reverse micellar solution: in vitro and in vivo evaluation. J Microencapsul. 2013;30(4):335–45.

Article  CAS  PubMed  Google Scholar 

Audu M, Achile PA, Amaechi AA. Phospholipon 90G based SLMs loaded with ibuprofen: an oral antiinflammatory and gastrointestinal sparing evaluation in rats. Pakistan J Zool. 2012;44:1657–64.

CAS  Google Scholar 

Vase H, Nemattalab M, Rohani M, Hesari Z. Comparison of chitosan and SLN nano-delivery systems for antibacterial effect of tea tree (Melaleuca alternifolia) oil against P. aeruginosa and S. aureus. Lett Appl Microbiol. 2023;76(11). https://doi.org/10.1093/lambio/ovad130.

Souto EB, et al. Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. Int J Pharm. 2004;278(1):71–7.

Article  CAS  PubMed  Google Scholar 

Nasr M, et al. Lipospheres as carriers for topical delivery of aceclofenac: preparation, characterization and in vivo evaluation. AAPS PharmSciTech. 2008;9(1):154–62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

El-Nesr OH, Yahiya SA, El-Gazayerly ON. Effect of formulation design and freeze-drying on properties of fluconazole multilamellar liposomes. Saudi Pharm J. 2010;18(4):217–24.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Varshosaz J, Eskandari S, Tabbakhian M. Freeze-drying of nanostructure lipid carriers by different carbohydrate polymers used as cryoprotectants. Carbohydr Polym. 2012;88(4):1157–63.

Article  CAS  Google Scholar 

Chime SA, Gugu TH. Effect of lyophilization on the physicochemical and physicotechnical properties of aspirin-loaded lipospheres. Innovare J Sci. 2014;2(3):4–8.

Google Scholar 

Lee MK, et al. Cryoprotectants for freeze drying of drug nano-suspensions: effect of freezing rate. J Pharm Sci. 2009;98(12):4808–17.

Article  CAS  PubMed  Google Scholar 

Leng D, et al. Formulating inhalable dry powders using two-fluid and three-fluid nozzle spray drying. Pharm Res. 2018;35(12):247.

Article  PubMed  Google Scholar 

Faghihi H, et al. The effect of freeze-dried antibody concentrations on its stability in the presence of trehalose and hydroxypropyl-β-cyclodextrin: a box–behnken statistical design. Pharm Dev Technol. 2017;22(6):724–32.

Article  CAS  PubMed  Google Scholar 

Prajapati L, et al. Lipospheres: recent advances in various drug delivery system. Int J Pharm Technol. 2013;5:2446–64.

CAS  Google Scholar 

Tomar Y, Maheshwari S, Gorantla S, Singhvi G. Curcumin loaded liquid crystalline nanoparticles for enhanced topical application: Design, characterization, ex vivo and dermatokinetic evaluation. J Drug Deliv Sci Technol. 2024;92:105391. https://www.sciencedirect.com/science/article/pii/S1773224724000595. https://doi.org/10.1016/j.jddst.2024.105391.

Rohani M, Nemattalab M, Hedayati M, Ghasemi S, Hesari Z. Comparison of chitosan and SLN nano-delivery systems for antibacterial effect of cinnamon (Cinnamomum verum) oil against MDR K pneumoniae and E coli. Phys Scr. 2023;98(10):105002. https://doi.org/10.1088/1402-4896/acf3a5.

Article  ADS  Google Scholar 

Ghanbarzadeh S, Valizadeh H, Zakeri-Milani P. The effects of lyophilization on the physico-chemical stability of sirolimus liposomes. Adv Pharm Bull. 2013;3(1):25–9.

PubMed  PubMed Central  Google Scholar 

Valjakka-Koskela R, et al. Enhancement of percutaneous absorption of naproxen by phospholipids. Int J Pharm. 1998;175(2):225–30.

Article  CAS  Google Scholar 

Li J, et al. A review on phospholipids and their main applications in drug delivery systems. Asian J Pharm Sci. 2015;10(2):81–98.

Article  Google Scholar 

Momoh MA, Kenechukwu FC, Attama AA. Formulation and evaluation of novel solid lipid microparticles as a sustained release system for the delivery of metformin hydrochloride. Drug Deliv. 2013;20(3–4):102–11.

Article  CAS  PubMed  Google Scholar 

Kim B-D, Na K, Choi H-K. Preparation and characterization of solid lipid nanoparticles (SLN) made of cacao butter and curdlan. Eur J Pharm Sci: Official J Eur Federation Pharm Sci. 2005;24:2–3.

Article  Google Scholar 

Taylor KMG, Morris RM. Thermal analysis of phase transition behaviour in liposomes. Thermochim Acta. 1995;248:289–301.

Article  CAS  Google Scholar 

Iscan Y, et al. DEET-loaded solid lipid particles for skin delivery: in vitro release and skin permeation characteristics in different vehicles. J Microencapsul. 2006;23(3):315–27.

Article  CAS  PubMed  Google Scholar 

Vighi E, et al. Re-dispersible cationic solid lipid nanoparticles (SLNs) freeze-dried without cryoprotectors: characterization and ability to bind the pEGFP-plasmid. Eur J Pharm Biopharm. 2007;67(2):320–8.

Article  CAS  PubMed  Google Scholar 

Schreier H, Levy M, Mihalko P. Sustained release of liposome-encapsulated gentamicin and fate of phospholipid following intramuscular injection in mice. J Controlled Release. 1987;5(2):187–92.

Article  CAS  Google Scholar 

Adler DMT, Damborg P, Verwilghen DR. The antimicrobial activity of bupivacaine, lidocaine and mepivacaine against equine pathogens: an investigation of 40 bacterial isolates. Vet J. 2017;223:27–31.

Article  CAS  PubMed  Google Scholar 

Johnson SM, Saint John BE, Dine AP. Local anesthetics as antimicrobial agents: a review. Surg Infect (Larchmt). 2008;9(2):205–13.

Article  PubMed  Google Scholar 

Kesici S, Demırci M, Kesici U. Antimicrobial effects of fentanyl and bupivacaine]. Braz J Anesthesiol. 2020;70(4):357–63.

Article  PubMed  PubMed Central  Google Scholar 

Casillas-Vargas G, et al. Antibacterial fatty acids: an update of possible mechanisms of action and implications in the development of the next-generation of antibacterial agents. Prog Lipid Res. 2021;82: 101093.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yoon BK, Jackman JA, Valle-González ER, Cho NJ. Antibacterial free fatty acids and monoglycerides: biological activities, experimental testing, and therapeutic applications. Int J Mol Sci. 2018;19(4). https://doi.org/10.3390/ijms19041114.

Nemati S, et al. Formulation of neem oil-loaded solid lipid nanoparticles and evaluation of its anti-toxoplasma activity. BMC Complement Med Ther. 2022;22(1):122.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif