Activity of zinc oxide and zinc borate nanoparticles against resistant bacteria in an experimental lung cancer model

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. https://doi.org/10.3322/caac.21492.

Article  PubMed  Google Scholar 

Akinosoglou KS, Karkoulias K, Marangos M. Infectious complications in patients with lung cancer. Eur Rev Med Pharmacol Sci. 2013;17(1):8–18.

CAS  PubMed  Google Scholar 

Valvani A, Martin A, Devarajan A, Chandy D. Postobstructive pneumonia in lung cancer. Ann Transl Med. 2019;7(15):357.

Article  PubMed  PubMed Central  Google Scholar 

European Centre for Disease Prevention and Control Antimicrobial resistance in the EU/EEA (EARS-Net). Annual Epidemiological Report 2019. Trop Doct. 2020;30:114–6.

Google Scholar 

Global antimicrobial resistance surveillance system (GLASS) report: early implementation 2020. Geneva: World Health Organization; 2020. Licence: CC BY-NC-SA 3.0 IGO.

Paterson DL. Resistance in gram-negative bacteria: Enterobacteriaceae. Am J Infect Control. 2006;34(5):20–8. https://doi.org/10.1016/j.ajic.2006.05.238.

Article  Google Scholar 

Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv. 2019;37(1):177–92. https://doi.org/10.1016/j.biotechadv.2018.11.013.

Article  CAS  PubMed  Google Scholar 

Laborda P, Hernando-Amado S, Martínez JL, Sanz-García F. Antibiotic resistance in pseudomonas. Adv Exp Med Biol. 2022;1386:117–43. https://doi.org/10.1007/978-3-031-08491-1_5.

Article  CAS  PubMed  Google Scholar 

Gordon NC, Wareham DW. Multidrug-resistant Acinetobacter baumannii: mechanisms of virulence and resistance. Int J Antimicrob Agents. 2010;35(3):219–26. https://doi.org/10.1016/j.ijantimicag.2009.10.024.

Article  CAS  PubMed  Google Scholar 

da Silva BL, Caetano BL, Chiari-Andréo BG, Pietro RCLR, Chiavacci LA. Increased antibacterial activity of ZnO nanoparticles: influence of size and surface modification. Colloids Surf B. 2019;177:440–7.

Article  Google Scholar 

Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D. Review on Zinc Oxide nanoparticles: antibacterial activity and toxicity mechanism. Nanomicro Lett. 2015;7(3):219–42.

CAS  PubMed  Google Scholar 

Adeniji OO, Ojemaye MO, Okoh AI. Antibacterial activity of metallic nanoparticles against multidrug-resistant pathogens isolated from environmental samples: nanoparticles/antibiotic combination therapy and cytotoxicity study. ACS Appl Bio Mater. 2022;5(10):4814–26.

Article  CAS  Google Scholar 

Riahi S, Moussa NB, Lajnef M, Jebari N, Dabek A, Chtourou R, ..., Herth E. Bactericidal activity of ZnO nanoparticles against multidrug-resistant bacteria. J Mol Liq. 2023;122596.

Mosleh-Shirazi S, Abbasi M, Moaddeli MR, Vaez A, Shafiee M, Kasaee SR, Amani AM, Hatam S. Nanotechnology advances in the detection and treatment of cancer: an overview. Nanotheranostics. 2022;6(4):400–23. https://doi.org/10.7150/ntno.74613.

Article  PubMed  PubMed Central  Google Scholar 

Chaturvedi VK, Singh A, Singh VK, Singh MP. Cancer nanotechnology: a new revolution for cancer diagnosis and therapy. Curr Drug Metab. 2019;20(6):416–92. https://doi.org/10.2174/1389200219666180918111528.

Article  CAS  PubMed  Google Scholar 

Zaimy MA, Saffarzadeh N, Mohammadi A, Pourghadamyari H, Izadi P, Sarli A, et al. New methods in the diagnosis of cancer and gene therapy of cancer based on nanoparticles. Cancer GeneTher. 2017;24(6):233–43. https://doi.org/10.1038/cgt.2017.16.

Article  CAS  Google Scholar 

Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, et al. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res. 2008;42(18):4591–602. https://doi.org/10.1016/j.watres.2008.08.015.

Article  CAS  PubMed  Google Scholar 

Gao X, Yu Z, Tang X, Zhang H, Peng L, Li J. Augmented antibacterial mechanism of ZnO nanoparticles by labyrinthian-channel configuration of maize-stalk carbohydrate columns and sustainable strategy for water decontamination. J Hazard Mater. 2022;15(436):129258. https://doi.org/10.1016/j.jhazmat.2022.129258.

Article  CAS  Google Scholar 

Zhu X, Wang J, Cai L, Wu Y, Ji M, Jiang H, Chen J. Dissection of the antibacterial mechanism of zinc oxide nanoparticles with manipulable nanoscale morphologies. J Hazard Mater. 2022;15(430): 128436. https://doi.org/10.1016/j.jhazmat.2022.128436.

Article  CAS  Google Scholar 

He M, Li X, Yu L, Deng S, Gu N, Li L, Jia J, Li B. Double-sided Nano-ZnO: superior antibacterial properties and induced hepatotoxicity in Zebrafish Embryos. Toxics. 2022;10(3):144. https://doi.org/10.3390/toxics10030144.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yılmaz GE, Göktürk I, Ovezova M, Yılmaz F, Kılıç S, Denizli A. Antimicrobial nanomaterials: a review. Hygiene. 2023;3(3):269–90. https://doi.org/10.3390/hygiene3030020.

Article  Google Scholar 

Guan G, Zhang L, Zhu J, Wu H, Li W, Sun Q. Antibacterial properties and mechanism of biopolymer-based films functionalized by CuO/ZnO nanoparticles against Escherichia coli and Staphylococcus aureus. J Hazard Mater. 2021;15(402):123542. https://doi.org/10.1016/j.jhazmat.2020.123542.

Article  CAS  Google Scholar 

Rayyif SMI, Mohammed HB, Curuțiu C, Bîrcă AC, Grumezescu AM, et al. ZnO Nanoparticles-Modified Dressings to Inhibit Wound Pathogens. Materials (Basel). 2021;14(11):3084. https://doi.org/10.3390/ma14113084.

Article  CAS  PubMed  Google Scholar 

Mendes CR, Dilarri G, Forsan CF, Sapata VMR, Lopes PRM, de Moraes PB, Montagnolli RN, Ferreira H, Bidoia ED. Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens. Sci Rep. 2022;12(1):2658. https://doi.org/10.1038/s41598-022-06657-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li Y, Yang Y, Qing Y, Li R, Tang X, Guo D, Qin Y. Enhancing ZnO-NP Antibacterial and Osteogenesis Properties in Orthopedic Applications: A Review. Int J Nanomedicine. 2020;20(15):6247–62. https://doi.org/10.2147/IJN.S262876.

Article  Google Scholar 

Irschik H, Schummer D, Gerth K, Höfle G, Reichenbach H. The tartrolons, newboron-containing antibiotics from a myxobacterium, Sorangium cellulosum. J Antibiot. 1995;48(1):26–30. https://doi.org/10.7164/antibiotics.48.26.

Article  CAS  Google Scholar 

Shimizu Y, Ogasawara Y, Matsumoto A, Dairi T. Aplasmomycin and boromycin are specific inhibitors of the futalosine pathway. J Antibiot. 2018;11:968–70. https://doi.org/10.1038/s41429-018-0087-2.

Article  CAS  Google Scholar 

Yilmaz MT. Minimum inhibitory and minimum bactericidal concentrations of boron compounds against several bacterial strains. Turk J Med Sci. 2012;42:1423–9. https://doi.org/10.3906/sag-1205-83.

Article  CAS  Google Scholar 

Blech M, Martin C, Borrelly J, Hartemann P. Treatment of deep wounds with loss of tissue. Value of a 3% boric acid solution. Presse Med. 1990;19(22):1050–2.

CAS  PubMed  Google Scholar 

Doğan A, Demirci S, Çağlayan AB, Kılıç E, Günal MY, Uslu Ü, et al. Sodium pentaborate pentahydrate and pluronic containing hydrogel increases cutaneous wound healing in vitro and in vivo. Biol Trace Elem Res. 2014;162:72–9. https://doi.org/10.1007/s12011-014-0104-7.

Article  CAS  PubMed  Google Scholar 

Demirci S, Doğan A, Karakuş E, Halıcı Z, Topçu A, Demirci E, et al. Boron and poloxamer (F68 and F127) containing hydrogel formulation for burn wound healing. Biol Trace Elem Res. 2015;168:169–80. https://doi.org/10.1007/s12011-015-0338-z.

Article  CAS  PubMed  Google Scholar 

Celebi D, Taghizadehghalehjough A, Baser S, Genc S, Yilmaz A, Yeni Y, et al. Effects of boric acid and potassium metaborate on cytokine levels and redox stress parameters in a wound model infected with methicillin resistant Staphylococcus aureus. Mol Med Rep. 2022;26:294. https://doi.org/10.3892/mmr.2022.12809.

Celebi O, Celebi D, Baser S, et al. Antibacterial activity of Boron compounds against Biofilm-forming pathogens. Biol Trace Elem Res. 2023;202:346–59. https://doi.org/10.1007/s12011-023-03768-z.

Article  CAS  PubMed  Google Scholar 

Biendo M, Laurans G, Lefebvre JF, Daoudi F, Eb F. Epidemiological study of an Acinetobacter baumannii outbreak by using a combination of antibiotyping and ribotyping. J Clin Microbiol. 1999;37(7):2170–5. https://doi.org/10.1128/jcm.37.7.2170-2175.1999.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fukuoka T, Ohya S, Narita T, Katsuta M, Iijima M, Masuda N. Activity of the carbapenem panipenem and role of the OprD (D2) protein in its diffusion through the Pseudomonas aeruginosa outer membrane. Antimicrob Agents Chemother. 1993;37(2):322–7. https://doi.org/10.1128/AAC.37.2.322.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elsner HA, Sobottka I, Mack D, Claussen M, Laufs R, Wirth R. Virulence factors of Enterococcus faecalis and Enterococcus faecium blood culture isolates. Eur J Clin Microbiol Infect Dis. 2000;19(1):39–42. https://doi.org/10.1007/s100960050007.

Article  CAS  PubMed  Google Scholar 

Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995;39(6):1211–33. https://doi.org/10.1128/AAC.39.6.1211.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Celebi D, Aydın E, Rakici E, et al. Evaluation of presence of clone ST131 and biofilm formation in ESBL producing and non-producing Escherichia coli strains. Mol Biol Rep. 2023;50:5949–56. https://doi.org/10.1007/s11033-023-08532-z.

Article 

留言 (0)

沒有登入
gif