Skeletal Muscle Complications in Chronic Kidney Disease

Chronic Kidney Disease in the United States, 2021 Atlanta, GA: US Departmetn of Health and Human Services: Centers for Disease Control and Prevention 2021.

Kim KM, Oh HJ, Choi HY, Lee H, Ryu DR. Impact of chronic kidney disease on mortality: a nationwide cohort study. Kidney Res Clin Pract. 2019;38(3):382–90.

PubMed  PubMed Central  Article  Google Scholar 

Kistler BM, Khubchandani J, Jakubowicz G, Wilund K, Sosnoff J. Falls and fall-related injuries among US adults aged 65 or older with chronic kidney disease. Prev Chronic Dis. 2018;15:E82.

PubMed  PubMed Central  Article  Google Scholar 

Tannor EK, Norman BR, Adusei KK, Sarfo FS, Davids MR, Bedu-Addo G. Quality of life among patients with moderate to advanced chronic kidney disease in Ghana - a single centre study. BMC Nephrol. 2019;20(1):122.

PubMed  PubMed Central  Article  Google Scholar 

Robertson L, Black C, Fluck N, Gordon S, Hollick R, Nguyen H, Prescott G, Marks A. Hip fracture incidence and mortality in chronic kidney disease: the GLOMMS-II record linkage cohort study. BMJ Open. 2018;8(4):e020312.

PubMed  PubMed Central  Article  Google Scholar 

Cruz MC, Andrade C, Urrutia M, Draibe S, Nogueira-Martins LA, Sesso RC. Quality of life in patients with chronic kidney disease. Clinics (Sao Paulo). 2011;66(6):991–5.

PubMed Central  Article  Google Scholar 

• Latham-Mintus K, Doshi S, Moorthi R. Chronic Kidney Disease, Muscle Weakness, and Mobility Limitation. Innovation in Aging. 2019;3(Supplement_1):S523-S. This article examines if CKD is associated with several different measures of physical funcitoning.

Lamarca F, Carrero JJ, Rodrigues JC, Bigogno FG, Fetter RL, Avesani CM. Prevalence of sarcopenia in elderly maintenance hemodialysis patients: the impact of different diagnostic criteria. J Nutr Health Aging. 2014;18(7):710–7.

CAS  PubMed  Article  Google Scholar 

• An JN, Kim JK, Lee HS, Kim SG, Kim HJ, Song YR. Late stage 3 chronic kidney disease is an independent risk factor for sarcopenia, but not proteinuria. Sci Rep. 2021;11(1):18472. This article determined that CKD is an independent risk factor for sarcopenia by assessing muscle mass via bioimpedance analysis and msucle strength via handgrip strength. They also found that protenureia was not associtaed with sarcopenia in CKD patients.

Kim JK, Kim SG, Oh JE, Lee YK, Noh JW, Kim HJ, Song YR. Impact of sarcopenia on long-term mortality and cardiovascular events in patients undergoing hemodialysis. Korean J Intern Med. 2019;34(3):599–607.

CAS  PubMed  Article  Google Scholar 

• Goates S, Du K, Arensberg MB, Gaillard T, Guralnik J, Pereira SL. Economic impact of hospitalizations in US adults with sarcopenia. J Frailty Aging. 2019;8(2):93-9. This article describes how sarocipenia related hospitilizations impact the economy.

System USRD. 2021 USRDS Annual Data Report: epidemiology of kidney disease in the United States. Bethesda, MD: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases; 2021.

Google Scholar 

Neves T, Ferriolli E, Lopes MBM, Souza MGC, Fett CA, Fett WCR. Prevalence and factors associated with sarcopenia and dynapenia in elderly people. J Frailty Sarcopenia Falls. 2018;3(4):194–202.

PubMed  PubMed Central  Article  Google Scholar 

Gingrich A, Volkert D, Kiesswetter E, Thomanek M, Bach S, Sieber CC, Zopf Y. Prevalence and overlap of sarcopenia, frailty, cachexia and malnutrition in older medical inpatients. BMC Geriatr. 2019;19(1):120.

PubMed  PubMed Central  Article  Google Scholar 

Miller PD. Chronic kidney disease and the skeleton. Bone Res. 2014;2:14044.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Leal DV, Ferreira A, Watson EL, Wilund KR, Viana JL. Muscle-bone crosstalk in chronic kidney disease: the potential modulatory effects of exercise. Calcif Tissue Int. 2021;108(4):461–75.

CAS  PubMed  Article  Google Scholar 

Avin KG, Hughes MC, Chen NX, Srinivasan S, O'Neill KD, Evan AP, Bacallao RL, Schulte ML, Moorthi RN, Gisch DL, Perry CGR, Moe SM, O'Connell TM. Skeletal muscle metabolic responses to physical activity are muscle type specific in a rat model of chronic kidney disease. Sci Rep. 2021;11(1):9788.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kalantar-Zadeh K, Mehrotra R, Fouque D, Kopple JD. Metabolic acidosis and malnutrition-inflammation complex syndrome in chronic renal failure. Semin Dial. 2004;17(6):455–65.

PubMed  Article  Google Scholar 

Jimeno-Fraile J, Cao H, Sancho-Insenser J, Lorente-Poch L, Sitges-Serra A. Muscle strength, physical performance, and metabolic changes after subtotal parathyroidectomy for secondary hyperparathyroidism. Surgery. 2021;169(4):846–51.

PubMed  Article  Google Scholar 

Takata T, Mae Y, Yamada K, Taniguchi S, Hamada S, Yamamoto M, Iyama T, Isomoto H. Skeletal muscle mass is associated with erythropoietin response in hemodialysis patients. BMC Nephrol. 2021;22(1):134.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Momb BA, Patino E, Akchurin OM, Miller MS. Iron supplementation improves skeletal muscle contractile properties in mice with CKD. Kidney360. 2022;3(5):843.

The European Uremic Toxins (EUTox) Database: European Uremix Toxins Work Group (EUTox); Available from: www.uremic-toxins.org.

Enoki Y, Watanabe H, Arake R, Sugimoto R, Imafuku T, Tominaga Y, Ishima Y, Kotani S, Nakajima M, Tanaka M, Matsushita K, Fukagawa M, Otagiri M, Maruyama T. Indoxyl sulfate potentiates skeletal muscle atrophy by inducing the oxidative stress-mediated expression of myostatin and atrogin-1. Sci Rep. 2016;6:32084.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Sato E, Mori T, Mishima E, Suzuki A, Sugawara S, Kurasawa N, Saigusa D, Miura D, Morikawa-Ichinose T, Saito R, Oba-Yabana I, Oe Y, Kisu K, Naganuma E, Koizumi K, Mokudai T, Niwano Y, Kudo T, Suzuki C, et al. Metabolic alterations by indoxyl sulfate in skeletal muscle induce uremic sarcopenia in chronic kidney disease. Sci Rep. 2016;6:36618.

Asai M, Kumakura S, Kikuchi M. Review of the efficacy of AST-120 (KREMEZIN((R))) on renal function in chronic kidney disease patients. Ren Fail. 2019;41(1):47–56.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Su PY, Lee YH, Kuo LN, Chen YC, Chen C, Kang YN, Chang EH. Efficacy of AST-120 for patients with chronic kidney disease: a network meta-analysis of randomized controlled trials. Front Pharmacol. 2021;12:676345.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Nishikawa M, Ishimori N, Takada S, Saito A, Kadoguchi T, Furihata T, Fukushima A, Matsushima S, Yokota T, Kinugawa S, Tsutsui H. AST-120 ameliorates lowered exercise capacity and mitochondrial biogenesis in the skeletal muscle from mice with chronic kidney disease via reducing oxidative stress. Nephrol Dial Transplant. 2015;30(6):934–42.

CAS  PubMed  Article  Google Scholar 

Thome T, Salyers ZR, Kumar RA, Hahn D, Berru FN, Ferreira LF, Scali ST, Ryan TE. Uremic metabolites impair skeletal muscle mitochondrial energetics through disruption of the electron transport system and matrix dehydrogenase activity. Am J Physiol Cell Physiol. 2019;317(4):C701–C13.

PubMed  PubMed Central  Article  Google Scholar 

Roshanravan B, Zelnick LR, Djucovic D, Gu H, Alvarez JA, Ziegler TR, et al. Chronic kidney disease attenuates the plasma metabolome response to insulin. JCI Insight. 2018;3(16).

Gamboa JL, Roshanravan B, Towse T, Keller CA, Falck AM, Yu C, Frontera WR, Brown NJ, Ikizler TA. Skeletal muscle mitochondrial dysfunction is present in patients with CKD before initiation of maintenance hemodialysis. Clin J Am Soc Nephrol. 2020;15(7):926–36.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hoppeler H. The different relationship of VO2max to muscle mitochondria in humans and quadrupedal animals. Respir Physiol. 1990;80(2-3):137–45.

CAS  PubMed  Article  Google Scholar 

Romanello V, Sandri M. Implications of mitochondrial fusion and fission in skeletal muscle mass and health. Sem Cell Dev Biol. 2022.

Kumar V, Chang H, Reiter DA, Bradley DP, Belury M, McCormack SE, et al. Phosphorus-31 Magnetic Resonance Spectroscopy: A Tool for Measuring In Vivo Mitochondrial Oxidative Phosphorylation Capacity in Human Skeletal Muscle. J Vis Exp. 2017(119):54977.

Kestenbaum B, Gamboa J, Liu S, Ali AS, Shankland E, Jue T, et al. Impaired skeletal muscle mitochondrial bioenergetics and physical performance in chronic kidney disease. JCI Insight. 2020;5(5).

Zhang YY, Gu LJ, Huang J, Cai MC, Yu HL, Zhang W, et al. CKD autophagy activation and skeletal muscle atrophy-a preliminary study of mitophagy and inflammation. Eur J Clin Nutr. 2019;73(6):950–60.

CAS  PubMed  Article  Google Scholar 

Doulamis IP, Guariento A, Duignan T, Kido T, Orfany A, Saeed MY, Weixler VH, Blitzer D, Shin B, Snay ER, Inkster JA, Packard AB, Zurakowski D, Rousselle T, Bajwa A, Parikh SM, Stillman IE, del Nido PJ, McCully JD. Mitochondrial transplantation by intra-arterial injection for acute kidney injury. Am J Physiol-Renal Physiol. 2020;319(3):F403–F13.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyere O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–31.

PubMed  Article  Google Scholar 

Studenski SA, Peters KW, Alley DE, Cawthon PM, McLean RR, Harris TB, et al. The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci. 2014;69(5):547–58.

PubMed  PubMed Central  Article  Google Scholar 

Fielding RA, Vellas B, Evans WJ, Bhasin S, Morley JE, Newman AB, Abellan van Kan G, Andrieu S, Bauer J, Breuille D, Cederholm T, Chandler J, de Meynard C, Donini L, Harris T, Kannt A, Keime Guibert F, onder G, Papanicolaou D, et al. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc. 2011;12(4):249–56.

Muscaritoli M, Anker SD, Argiles J, Aversa Z, Bauer JM, Biolo G, et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin Nutr. 2010;29(2):154–9.

CAS  PubMed  Article  Google Scholar 

Sabatino A, D'Alessandro C, Regolisti G, di Mario F, Guglielmi G, Bazzocchi A, et al. Muscle mass assessment in renal disease: the role of imaging techniques. Quant Imaging Med Surg. 2020;10(8):1672–86.

PubMed  PubMed Central  Article  Google Scholar 

Kim B, Park H, Kim G, Isobe T, Sakae T, Oh S. Relationships of fat and muscle mass with chronic kidney disease in older adults: a cross-sectional pilot study. Int J Environ Res Public Health. 2020;17(23).

Matyjek A, Literacki S, Niemczyk S, Rymarz A. Protein energy-wasting associated with nephrotic syndrome - the comparison of metabolic pattern in severe nephrosis to different stages of chronic kidney disease. BMC Nephrol. 2020;21(1):346.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Tan RS, Liang DH, Liu Y, Zhong XS, Zhang DS, Ma J. Bioelectrical impedance analysis-derived phase angle predicts protein-energy wasting in maintenance hemodialysis patients. J Ren Nutr. 2019;29(4):295–301.

CAS  PubMed  Article  Google Scholar 

• Zhou Y, Hoglund P, Clyne N. Comparison of DEXA and Bioimpedance for Body Composition Measurements in Nondialysis Patients With CKD. J Ren Nutr. 2019;29(1):33-8. This article describes the improtance of measureing body composition over time using the same tool in nondialysis CKD since results may vary between tools. Factors that contribute to variation include: lean tissue index, fat tissue index, and hydration status.

Barreto Silva MI, Menna Barreto APM, Pontes K, Costa MSD, Rosina KTC, Souza E, et al. Accuracy of surrogate methods to estimate skeletal muscle mass in non-dialysis dependent patients with chronic kidney disease and in kidney transplant recipients. Clin Nutr. 2021;40(1):303–12.

PubMed  Article 

留言 (0)

沒有登入
gif