Protective mechanisms of loquat leaf extract and ursolic acid against diabetic pro-inflammation

Lin S, Huang X, Cuevas J, Janick J (2007) Loquat: an ancient fruit crop with a promising future. Chronica Hort 47:12–15

Google Scholar 

Liu Y, Zhang W, Xu C, Li X (2016) Biological activities of extracts from loquat (Eriobotrya japonica Lindl.): a review. Int J Mol Sci 17. https://doi.org/10.3390/ijms17121983

Shimizu M, Fukumura H, Tsuji H, Tanaami S, Hayashi T, Morita N (1986) Anti-inflammatory constituents of topically applied crude drugs. I. Constituents and anti-inflammatory effect of Eriobotrya japonica LINDL. Chem Pharm Bull (Tokyo) 34:2614–2617. https://doi.org/10.1248/cpb.34.2614

Article  CAS  Google Scholar 

Chunhua Z, Li X, Sun C-D, Xu C-J, Chen K-S (2011) Effects of drying methods on the bioactive components in loquat (Eriobotrya japonica Lindl.) flowers. Journal of medicinal plant research 5:3037–3041

Google Scholar 

Seo DY, Lee SR, Heo JW, No MH, Rhee BD, Ko KS, Kwak HB, Han J (2018) Ursolic acid in health and disease. Korean J Physiol Pharmacol 22:235–248. https://doi.org/10.4196/kjpp.2018.22.3.235

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mlala S, Oyedeji AO, Gondwe M, Oyedeji OO (2019) Ursolic acid and its derivatives as bioactive agents. Molecules 24. https://doi.org/10.3390/molecules24152751

Mazumder K, Biswas B, Al Mamun A, Billah H, Abid A, Sarkar KK, Saha B, Azom S, Kerr PG (2022) Investigations of AGEs’ inhibitory and nephroprotective potential of ursolic acid towards reduction of diabetic complications. J Nat Med 76:490–503. https://doi.org/10.1007/s11418-021-01602-1

Article  PubMed  CAS  Google Scholar 

Luo H, Vong CT, Chen H, Gao Y, Lyu P, Qiu L, Zhao M, Liu Q, Cheng Z, Zou J et al (2019) Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine. Chin Med 14:48. https://doi.org/10.1186/s13020-019-0270-9

Article  PubMed  PubMed Central  CAS  Google Scholar 

Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820. https://doi.org/10.1038/414813a

Article  PubMed  CAS  Google Scholar 

Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615–1625. https://doi.org/10.2337/diabetes.54.6.1615

Article  PubMed  CAS  Google Scholar 

Guo M, Liu L, Zhang J, Liu M (2015) Role of reactive oxygen species and advanced glycation end products in the malfunctioning of dental implants. West Indian Med J 64:419–423. https://doi.org/10.7727/wimj.2014.105

Article  PubMed  CAS  Google Scholar 

Forbes JM, Cooper ME (2013) Mechanisms of diabetic complications. Physiol Rev 93:137–188. https://doi.org/10.1152/physrev.00045.2011

Article  PubMed  CAS  Google Scholar 

Kankova K (2008) Diabetic threesome (hyperglycaemia, renal function and nutrition) and advanced glycation end products: evidence for the multiple-hit agent? Proc Nutr Soc 67:60–74. https://doi.org/10.1017/S0029665108006034

Article  PubMed  Google Scholar 

Ott C, Jacobs K, Haucke E, Navarrete Santos A, Grune T, Simm A (2014) Role of advanced glycation end products in cellular signaling. Redox Biol 2:411–429. https://doi.org/10.1016/j.redox.2013.12.016

Article  PubMed  PubMed Central  CAS  Google Scholar 

Marinkovic D, Zhang X, Yalcin S, Luciano JP, Brugnara C, Huber T, Ghaffari S (2007) Foxo3 is required for the regulation of oxidative stress in erythropoiesis. J Clin Invest 117:2133–2144. https://doi.org/10.1172/JCI31807

Article  PubMed  PubMed Central  CAS  Google Scholar 

Jung HA, Park JC, Chung HY, Kim J, Choi JS (1999) Antioxidant flavonoids and chlorogenic acid from the leaves of Eriobotrya japonica. Arch Pharm Res 22:213–218. https://doi.org/10.1007/BF02976549

Article  PubMed  CAS  Google Scholar 

Nakayama H, Mitsuhashi T, Kuwajima S, Aoki S, Kuroda Y, Itoh T, Nakagawa S (1993) Immunochemical detection of advanced glycation end products in lens crystallins from streptozocin-induced diabetic rat. Diabetes 42:345–350. https://doi.org/10.2337/diab.42.2.345

Article  PubMed  CAS  Google Scholar 

Hyogo H, Yamagishi S (2008) Advanced glycation end products (AGEs) and their involvement in liver disease. Curr Pharm Des 14:969–972. https://doi.org/10.2174/138161208784139701

Article  PubMed  CAS  Google Scholar 

Shackelford DB, Shaw RJ (2009) The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 9:563–575. https://doi.org/10.1038/nrc2676

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zeqiraj E, Filippi BM, Deak M, Alessi DR, van Aalten DM (2009) Structure of the LKB1-STRAD-MO25 complex reveals an allosteric mechanism of kinase activation. Science 326:1707–1711. https://doi.org/10.1126/science.1178377

Article  PubMed  PubMed Central  CAS  Google Scholar 

Greer EL, Oskoui PR, Banko MR, Maniar JM, Gygi MP, Gygi SP, Brunet A (2007) The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J Biol Chem 282:30107–30119. https://doi.org/10.1074/jbc.M705325200

Article  PubMed  CAS  Google Scholar 

Cichoz-Lach H, Michalak A (2014) Oxidative stress as a crucial factor in liver diseases. World J Gastroenterol 20:8082–8091. https://doi.org/10.3748/wjg.v20.i25.8082

Article  PubMed  PubMed Central  CAS  Google Scholar 

Manna P, Das J, Ghosh J, Sil PC (2010) Contribution of type 1 diabetes to rat liver dysfunction and cellular damage via activation of NOS, PARP, IkappaBalpha/NF-kappaB, MAPKs, and mitochondria-dependent pathways: prophylactic role of arjunolic acid. Free Radic Biol Med 48:1465–1484. https://doi.org/10.1016/j.freeradbiomed.2010.02.025

Article  PubMed  CAS  Google Scholar 

Tolman KG, Fonseca V, Dalpiaz A, Tan MH (2007) Spectrum of liver disease in type 2 diabetes and management of patients with diabetes and liver disease. Diabetes Care 30:734–743. https://doi.org/10.2337/dc06-1539

Article  PubMed  CAS  Google Scholar 

Alkreathy HM, Ahmad A (2020) Catharanthus roseus combined with ursolic acid attenuates streptozotocin-induced diabetes through insulin secretion and glycogen storage. Oxid Med Cell Longev 2020:8565760. https://doi.org/10.1155/2020/8565760

Article  PubMed  PubMed Central  CAS  Google Scholar 

Jang SM, Kim MJ, Choi MS, Kwon EY, Lee MK (2010) Inhibitory effects of ursolic acid on hepatic polyol pathway and glucose production in streptozotocin-induced diabetic mice. Metabolism 59:512–519. https://doi.org/10.1016/j.metabol.2009.07.040

Article  PubMed  CAS  Google Scholar 

Lu J, Wu DM, Zheng YL, Hu B, Cheng W, Zhang ZF, Shan Q (2011) Ursolic acid improves high fat diet-induced cognitive impairments by blocking endoplasmic reticulum stress and IkappaB kinase beta/nuclear factor-kappaB-mediated inflammatory pathways in mice. Brain Behav Immun 25:1658–1667. https://doi.org/10.1016/j.bbi.2011.06.009

Article  PubMed  CAS  Google Scholar 

Gonzalez-Garibay AS, Lopez-Vazquez A, Garcia-Banuelos J, Sanchez-Enriquez S, Sandoval-Rodriguez AS, Del Toro AS, Bueno-Topete MR, Munoz-Valle JF, Gonzalez Hita ME, Dominguez-Rosales JA et al (2020) Effect of ursolic acid on insulin resistance and hyperinsulinemia in rats with diet-induced obesity: role of adipokines expression. J Med Food 23:297–304. https://doi.org/10.1089/jmf.2019.0154

Article  PubMed  CAS  Google Scholar 

Ma TK, Xu L, Lu LX, Cao X, Li X, Li LL, Wang X, Fan QL (2019) Ursolic acid treatment alleviates diabetic kidney injury by regulating the ARAP1/AT1R signaling pathway. Diabetes Metab Syndr Obes 12:2597–2608. https://doi.org/10.2147/DMSO.S222323

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wang J, Zhao J, Yan Y, Liu D, Wang C, Wang H (2020) Inhibition of glycosidase by ursolic acid: in vitro, in vivo and in silico study. J Sci Food Agric 100:986–994. https://doi.org/10.1002/jsfa.10098

Article  PubMed  CAS  Google Scholar 

Guzman-Avila R, Flores-Morales V, Paoli P, Camici G, Ramirez-Espinosa JJ, Ceron-Romero L, Navarrete-Vazquez G, Hidalgo-Figueroa S, Yolanda Rios M, Villalobos-Molina R et al (2018) Ursolic acid derivatives as potential antidiabetic agents: in vitro, in vivo, and in silico studies. Drug Dev Res 79:70–80. https://doi.org/10.1002/ddr.21422

Article  PubMed  CAS  Google Scholar 

Li J, Li N, Yan S, Liu M, Sun B, Lu Y, Shao Y (2018) Ursolic acid alleviates inflammation and against diabetesinduced nephropathy through TLR4mediated inflammatory pathway. Mol Med Rep 18:4675–4681. https://doi.org/10.3892/mmr.2018.9429

Article  PubMed  CAS  Google Scholar 

Wang XT, Gong Y, Zhou B, Yang JJ, Cheng Y, Zhao JG, Qi MY (2018) Ursolic acid ameliorates oxidative stress, inflammation and fibrosis in diabetic cardiomyopathy rats. Biomed Pharmacother 97:1461–1467. https://doi.org/10.1016/j.biopha.2017.11.032

Article  PubMed  CAS  Google Scholar 

Lu X, Fan Q, Xu L, Li L, Yue Y, Xu Y, Su Y, Zhang D, Wang L (2015) Ursolic acid attenuates diabetic mesangial cell injury through the up-regulation of autophagy via miRNA-21/PTEN/Akt/mTOR suppression. PLoS ONE 10:e0117400. https://doi.org/10.1371/journal.pone.0117400

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ramachandran S, Prasad NR (2008) Effect of ursolic acid, a triterpenoid antioxidant, on ultraviolet-B radiation-induced cytotoxicity, lipid peroxidation and DNA damage in human lymphocytes. Chem Biol Interact 176:99–107. https://doi.org/10.1016/j.cbi.2008.08.010

Article  PubMed  CAS  Google Scholar 

Yang Y, Zhao Z, Liu Y, Kang X, Zhang H, Meng M (2015) Suppression of oxidative stress and improvement of liver functions in mice by ursolic acid via LKB1-AMP-activated protein kinase signaling. J Gastroenterol Hepatol 30:609–618. https://doi.org/10.1111/jgh.12723

Article  PubMed  CAS  Google Scholar 

He Y, Li Y, Zhao T, Wang Y, Su

留言 (0)

沒有登入
gif