Abnormal protein SUMOylation in liver disease: novel target for therapy

Chen Y, Peng W, Tao Q et al (2023) Increased small ubiquitin-like modifier-activating enzyme SAE1 promotes hepatocellular carcinoma by enhancing mTOR SUMOylation. Lab Invest 103(1):100011

Article  PubMed  Google Scholar 

Ong JR, Bamodu OA, Khang NV et al (2021) SUMO-activating enzyme subunit 1 (SAE1) is a promising diagnostic cancer metabolism biomarker of hepatocellular carcinoma. Cells 10(1):178

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tomasi ML, Ramani K, Ryoo M et al (2018) SUMOylation regulates cytochrome P450 2E1 expression and activity in alcoholic liver disease. Faseb j 32(6):3278–3288

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang H, Gao S, Chen J et al (2020) UBE2I promotes metastasis and correlates with poor prognosis in hepatocellular carcinoma. Cancer Cell Int 20:234

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tu J, Chen Y, Cai L et al (2015) Functional proteomics study reveals SUMOylation of TFII-I is involved in liver cancer cell proliferation. J Proteome Res 14(6):2385–2397

Article  CAS  PubMed  Google Scholar 

Li J, Xu Y, Long XD et al (2014) Cbx4 governs HIF-1α to potentiate angiogenesis of hepatocellular carcinoma by its SUMO E3 ligase activity. Cancer Cell 25(1):118–131

Article  CAS  PubMed  Google Scholar 

Yan L, Zhang T, Wang K et al (2022) SENP1 prevents steatohepatitis by suppressing RIPK1-driven apoptosis and inflammation. Nat Commun 13(1):7153

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tao Y, Li R, Shen C et al (2020) SENP1 is a crucial promotor for hepatocellular carcinoma through deSUMOylation of UBE2T. Aging (Albany NY) 12(2):1563–1576

Article  CAS  PubMed  Google Scholar 

Cui CP, Wong CC, Kai AK et al (2017) SENP1 promotes hypoxia-induced cancer stemness by HIF-1α deSUMOylation and SENP1/HIF-1α positive feedback loop. Gut 66(12):2149–2159

Article  CAS  PubMed  Google Scholar 

Liu Y, Dou X, Zhou WY et al (2021) Hepatic small ubiquitin-related modifier (SUMO)-specific protease 2 controls systemic metabolism through SUMOylation-dependent regulation of liver-adipose tissue crosstalk. Hepatology 74(4):1864–1883

Article  CAS  PubMed  Google Scholar 

Jin ZL, Pei H, Xu YH et al (2016) The SUMO-specific protease SENP5 controls DNA damage response and promotes tumorigenesis in hepatocellular carcinoma. Eur Rev Med Pharmacol Sci 20(17):3566–3573

PubMed  Google Scholar 

Qian J, Luo Y, Gu X et al (2013) Inhibition of SENP6-induced radiosensitization of human hepatocellular carcinoma cells by blocking radiation-induced NF-κB activation. Cancer Biother Radiopharm 28(3):196–200

CAS  PubMed  Google Scholar 

Floris A, Chandla S, Lim Y et al (2023) Sumoylation of methionine adenosyltransferase alpha 1 promotes mitochondrial dysfunction in alcohol-associated liver disease. Hepatology. Epub ahead of print

Alfaro AJ, Dittner C, Becker J et al (2023) Fasting-sensitive SUMO-switch on Prox1 controls hepatic cholesterol metabolism. EMBO Rep 24(10):e55981

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee GY, Jang H, Lee JH et al (2014) PIASy-mediated sumoylation of SREBP1c regulates hepatic lipid metabolism upon fasting signaling. Mol Cell Biol 34(6):926–938

Article  PubMed  PubMed Central  Google Scholar 

Wang S, Yang M, Li P et al (2023) High-fat diet-Iinduced deSUMOylation of E4BP4 promotes lipid droplet biogenesis and liver steatosis in mice. Diabetes 72(3):348–361

Article  CAS  PubMed  Google Scholar 

Fan Y, Li X, Zhang L et al (2022) SUMOylation in viral replication and antiviral defense. Adv Sci (Weinh) 9(7):e2104126

Article  PubMed  Google Scholar 

Krump NA, You J (2018) Molecular mechanisms of viral oncogenesis in humans. Nat Rev Microbiol 16(11):684–698

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo J, Chen D, Gao X et al (2017) Protein inhibitor of activated STAT2 restricts HCV replication by modulating viral proteins degradation. Viruses 9(10):285

Article  PubMed  PubMed Central  Google Scholar 

Lee HS, Lim YS, Park EM et al (2014) SUMOylation of nonstructural 5A protein regulates hepatitis C virus replication. J Viral Hepat 21(10):e108–e117

Article  CAS  PubMed  Google Scholar 

Hofmann S, Plank V, Groitl P et al (2023) SUMO modification of hepatitis B virus core mediates nuclear entry, promyelocytic leukemia nuclear body association, and efficient formation of covalently closed circular DNA. Microbiol Spectr 11(3):e0044623

Article  PubMed  Google Scholar 

Xi R, Kadur Lakshminarasimha Murthy P, Tung KL et al (2019) SENP3-mediated host defense response contains HBV replication and restores protein synthesis. PLoS One 14(1):e0209179

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yen CJ, Yang ST, Chen RY et al (2019) Hepatitis B virus X protein (HBx) enhances centrosomal P4.1-associated protein (CPAP) expression to promote hepatocarcinogenesis. J Biomed Sci 26(1):44

Article  PubMed  PubMed Central  Google Scholar 

Sengupta I, Das D, Singh SP et al (2017) Host transcription factor Speckled 110 kDa (Sp110), a nuclear body protein, is hijacked by hepatitis B virus protein X for viral persistence. J Biol Chem 292(50):20379–20393

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ha HL, Kwon T, Bak IS et al (2016) IGF-II induced by hepatitis B virus X protein regulates EMT via SUMO mediated loss of E-cadherin in mice. Oncotarget 7(35):56944–56957

Article  PubMed  PubMed Central  Google Scholar 

Akil A, Wedeh G, Zahid Mustafa M et al (2016) SUMO1 depletion prevents lipid droplet accumulation and HCV replication. Arch Virol 161(1):141–148

Article  CAS  PubMed  Google Scholar 

Chen J, Zhou Y, Zhuang Y et al (2019) The metabolic regulator small heterodimer partner contributes to the glucose and lipid homeostasis abnormalities induced by hepatitis C virus infection. Metabolism 100:153954

Article  CAS  PubMed  Google Scholar 

Tseng CH, Cheng TS, Shu CY et al (2010) Modification of small hepatitis delta virus antigen by SUMO protein. J Virol 84(2):918–927

Article  CAS  PubMed  Google Scholar 

Wang Z, Pan B, Su L et al (2023) SUMOylation inhibitors activate anti-tumor immunity by reshaping the immune microenvironment in a preclinical model of hepatocellular carcinoma. Cell Oncol (Dordr). Epub ahead of print

Guo H, Xu J, Zheng Q et al (2019) NRF2 SUMOylation promotes de novo serine synthesis and maintains HCC tumorigenesis. Cancer Lett 466:39–48

Article  CAS  PubMed  Google Scholar 

Zubiete-Franco I, García-Rodríguez JL, Lopitz-Otsoa F et al (2019) SUMOylation regulates LKB1 localization and its oncogenic activity in liver cancer. EBioMedicine 40:406–421

Article  PubMed  Google Scholar 

Li W, Han Q, Zhu Y et al (2023) SUMOylation of RNF146 results in Axin degradation and activation of Wnt/β-catenin signaling to promote the progression of hepatocellular carcinoma. Oncogene 42(21):1728–1740

Article  CAS  PubMed  Google Scholar 

Bian XL, Chen HZ, Yang PB et al (2017) Nur77 suppresses hepatocellular carcinoma via switching glucose metabolism toward gluconeogenesis through attenuating phosphoenolpyruvate carboxykinase sumoylation. Nat Commun 8:14420

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu H, Wang H, Zhao W et al (2020) SUMO1 modification of methyltransferase-like 3 promotes tumor progression via regulating Snail mRNA homeostasis in hepatocellular carcinoma. Theranostics 10(13):5671–5686

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin D, Fu Z, Yang G et al (2020) Exportin-5 SUMOylation promotes hepatocellular carcinoma progression. Exp Cell Res 395(2):112219

Article  CAS  PubMed  Google Scholar 

Zhou Q, Yin Y, Yu M et al (2022) GTPBP4 promotes hepatocellular carcinoma progression and metastasis via the PKM2 dependent glucose metabolism. Redox Biol 56:102458

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Z, Pan B, Qiu J et al (2023) SUMOylated IL-33 in the nucleus stabilizes the transcription factor IRF1 in hepatocellular carcinoma cells to promote immune escape. Sci Signal 16(776):eabq3362

Article  CAS  PubMed  Google Scholar 

Liu J, Sha M, Wang Q et al (2015) Small ubiquitin-related modifier 2/3 interacts with p65 and stabilizes it in the cytoplasm in HBV-associated hepatocellular carcinoma. BMC Cancer 15:675

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif