How calorie restriction slows aging: an epigenetic perspective

Niccoli T, Partridge L (2012) Ageing as a risk factor for disease. Curr Biol 22:R741-752. https://doi.org/10.1016/j.cub.2012.07.024

Article  CAS  PubMed  Google Scholar 

López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217. https://doi.org/10.1016/j.cell.2013.05.039

Article  CAS  PubMed  PubMed Central  Google Scholar 

Villeponteau B (1997) The heterochromatin loss model of aging. Exp Gerontol 32:383–394. https://doi.org/10.1016/s0531-5565(96)00155-6

Article  CAS  PubMed  Google Scholar 

Pegoraro G, Kubben N, Wickert U, Göhler H, Hoffmann K, Misteli T (2009) Ageing-related chromatin defects through loss of the NURD complex. Nat Cell Biol 11:1261–1267. https://doi.org/10.1038/ncb1971

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsurumi A, Li WX (2012) Global heterochromatin loss: a unifying theory of aging? Epigenetics 7:680–688. https://doi.org/10.4161/epi.20540

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saul D, Kosinsky RL (2021) Epigenetics of aging and aging-associated diseases. Int J Mol Sci 22. https://doi.org/10.3390/ijms22010401

Janssen A, Colmenares SU, Karpen GH (2018) Heterochromatin: guardian of the genome. Annu Rev Cell Dev Biol 34:265–288. https://doi.org/10.1146/annurev-cellbio-100617-062653

Article  CAS  PubMed  Google Scholar 

Diao Z, Ji Q, Wu Z, Zhang W, Cai Y, Wang Z, Hu J, Liu Z, Wang Q, Bi S et al (2021) SIRT3 consolidates heterochromatin and counteracts senescence. Nucleic Acids Res 49:4203–4219. https://doi.org/10.1093/nar/gkab161

Article  CAS  PubMed  PubMed Central  Google Scholar 

Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14:R115. https://doi.org/10.1186/gb-2013-14-10-r115

Article  PubMed  PubMed Central  Google Scholar 

Vijayakumar KA, Cho GW (2022) Pan-tissue methylation aging clock: recalibrated and a method to analyze and interpret the selected features. Mech Ageing Dev 204:111676. https://doi.org/10.1016/j.mad.2022.111676

Article  CAS  PubMed  Google Scholar 

Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzle B, Bibikova M, Fan JB, Gao Y et al (2013) Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell 49:359–367. https://doi.org/10.1016/j.molcel.2012.10.016

Article  CAS  PubMed  Google Scholar 

Bollati V, Schwartz J, Wright R, Litonjua A, Tarantini L, Suh H, Sparrow D, Vokonas P, Baccarelli A (2009) Decline in genomic DNA methylation through aging in a cohort of elderly subjects. Mech Ageing Dev 130:234–239. https://doi.org/10.1016/j.mad.2008.12.003

Article  CAS  PubMed  Google Scholar 

Sheaffer KL, Elliott EN, Kaestner KH (2016) DNA hypomethylation contributes to genomic instability and intestinal cancer initiation. Cancer Prev Res (Phila) 9:534–546. https://doi.org/10.1158/1940-6207.Capr-15-0349

Article  CAS  PubMed  Google Scholar 

Holliday R (1989) Food, reproduction and longevity: is the extended lifespan of calorie-restricted animals an evolutionary adaptation? BioEssays 10:125–127. https://doi.org/10.1002/bies.950100408

Article  CAS  PubMed  Google Scholar 

Vijayakumar K, Cho GW (2019) Autophagy: an evolutionarily conserved process in the maintenance of stem cells and aging. Cell Biochem Funct 37:452–458. https://doi.org/10.1002/cbf.3427

Article  CAS  PubMed  Google Scholar 

Pifferi F, Terrien J, Marchal J, Dal-Pan A, Djelti F, Hardy I, Chahory S, Cordonnier N, Desquilbet L, Hurion M et al (2018) Caloric restriction increases lifespan but affects brain integrity in grey mouse lemur primates. Commun Biol 1:30. https://doi.org/10.1038/s42003-018-0024-8

Article  PubMed  PubMed Central  Google Scholar 

McCay CM, Crowell MF, Maynard LA (1935) The effect of retarded growth upon the length of life span and upon the ultimate body size: one figure. J Nutr 10:63–79. https://doi.org/10.1093/jn/10.1.63

Article  CAS  Google Scholar 

Giacomello E, Toniolo L (2021) The potential of calorie restriction and calorie restriction mimetics in delaying aging: focus on experimental models. Nutrients 13. https://doi.org/10.3390/nu13072346

Willcox DC, Willcox BJ, Todoriki H, Suzuki M (2009) The Okinawan diet: health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. J Am Coll Nutr 28(Suppl):500s–516s. https://doi.org/10.1080/07315724.2009.10718117

Article  CAS  PubMed  Google Scholar 

Willcox DC, Willcox BJ, Todoriki H, Curb JD, Suzuki M (2006) Caloric restriction and human longevity: what can we learn from the Okinawans? Biogerontology 7:173–177. https://doi.org/10.1007/s10522-006-9008-z

Article  PubMed  Google Scholar 

Wu Q, Gao ZJ, Yu X, Wang P (2022) Dietary regulation in health and disease. Signal Transduct Target Ther 7:252. https://doi.org/10.1038/s41392-022-01104-w

Article  PubMed  PubMed Central  Google Scholar 

Das SK, Balasubramanian P, Weerasekara YK (2017) Nutrition modulation of human aging: the calorie restriction paradigm. Mol Cell Endocrinol 455:148–157. https://doi.org/10.1016/j.mce.2017.04.011

Article  CAS  PubMed  PubMed Central  Google Scholar 

Most J, Redman LM (2020) Impact of calorie restriction on energy metabolism in humans. Exp Gerontol 133:110875. https://doi.org/10.1016/j.exger.2020.110875

Article  CAS  PubMed  PubMed Central  Google Scholar 

Green CL, Lamming DW, Fontana L (2022) Molecular mechanisms of dietary restriction promoting health and longevity. Nat Rev Mol Cell Biol 23:56–73. https://doi.org/10.1038/s41580-021-00411-4

Article  CAS  PubMed  Google Scholar 

Yuan Y, Cruzat VF, Newsholme P, Cheng J, Chen Y, Lu Y (2016) Regulation of SIRT1 in aging: roles in mitochondrial function and biogenesis. Mech Ageing Dev 155:10–21. https://doi.org/10.1016/j.mad.2016.02.003

Article  CAS  PubMed  Google Scholar 

Ingram DK, Roth GS (2015) Calorie restriction mimetics: can you have your cake and eat it, too? Ageing Res Rev 20:46–62. https://doi.org/10.1016/j.arr.2014.11.005

Article  PubMed  Google Scholar 

Hofer SJ, Davinelli S, Bergmann M, Scapagnini G, Madeo F (2021) Caloric restriction mimetics in nutrition and clinical trials. Front Nutr 8:717343. https://doi.org/10.3389/fnut.2021.717343

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martel J, Chang SH, Wu CY, Peng HH, Hwang TL, Ko YF, Young JD, Ojcius DM (2021) Recent advances in the field of caloric restriction mimetics and anti-aging molecules. Ageing Res Rev 66:101240. https://doi.org/10.1016/j.arr.2020.101240

Article  CAS  PubMed  Google Scholar 

Gillespie ZE, Pickering J, Eskiw CH (2016) Better living through chemistry: caloric restriction (CR) and CR mimetics alter genome function to promote increased health and lifespan. Front Genet 7:142. https://doi.org/10.3389/fgene.2016.00142

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morselli E, Mariño G, Bennetzen MV, Eisenberg T, Megalou E, Schroeder S, Cabrera S, Bénit P, Rustin P, Criollo A et al (2011) Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J Cell Biol 192:615–629. https://doi.org/10.1083/jcb.201008167

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cuzick J, Thorat MA, Bosetti C, Brown PH, Burn J, Cook NR, Ford LG, Jacobs EJ, Jankowski JA, La Vecchia C et al (2015) Estimates of benefits and harms of prophylactic use of aspirin in the general population. Ann Oncol 26:47–57. https://doi.org/10.1093/annonc/mdu225

Article  CAS  PubMed  Google Scholar 

Basu A, Tiwari VK (2021) Epigenetic reprogramming of cell identity: lessons from development for regenerative medicine. Clin Epigenetics 13:144. https://doi.org/10.1186/s13148-021-01131-4

Article  PubMed  PubMed Central  Google Scholar 

Arabacı DH, Terzioğlu G, Bayırbaşı B, Önder TT (2021) Going up the hill: chromatin-based barriers to epigenetic reprogramming. Febs j 288:4798–4811. https://doi.org/10.1111/febs.15628

Article  CAS  PubMed  Google Scholar 

Waddington CH (2014) The strategy of the genes Routledge

Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676. https://doi.org/10.1016/j.cell.2006.07.024

Article  CAS  PubMed 

留言 (0)

沒有登入
gif