Exploiting the therapeutic potential of contracting skeletal muscle-released extracellular vesicles in cancer: Current insights and future directions

Faustino-Rocha AI, Silva A, Gabriel J, Gil da Costa RM, Moutinho M, Oliveira PA, Gama A, Ferreira R, Ginja M (2016) Long-term exercise training as a modulator of mammary cancer vascularization. Biomed Pharmacother 81:273–280

Article  CAS  PubMed  Google Scholar 

Schadler KL, Thomas NJ, Galie PA, Bhang DH, Roby KC, Addai P, Till JE, Sturgeon K, Zaslavsky A, Chen CS et al (2016) Tumor vessel normalization after aerobic exercise enhances chemotherapeutic efficacy. Oncotarget 7:65429–65440

Article  PubMed  PubMed Central  Google Scholar 

Adraskela K, Veisaki E, Koutsilieris M, Philippou A (2017) Physical exercise positively influences breast cancer evolution. Clin Breast Cancer 17:408–417

Article  PubMed  Google Scholar 

Neufer PD, Bamman MM, Muoio DM, Bouchard C, Cooper DM, Goodpaster BH, Booth FW, Kohrt WM, Gerszten RE, Mattson MP et al (2015) Understanding the cellular and molecular mechanisms of physical activity-induced health benefits. Cell Metab 22:4–11

Article  CAS  PubMed  Google Scholar 

Pedersen BK, Fischer CP (2007) Beneficial health effects of exercise–the role of IL-6 as a myokine. Trends Pharmacol Sci 28:152–156

Article  CAS  PubMed  Google Scholar 

Safdar A, Saleem A, Tarnopolsky MA (2016) The potential of endurance exercise-derived exosomes to treat metabolic diseases. Nat Rev Endocrinol 12:504–517

Article  CAS  PubMed  Google Scholar 

Fruhbeis C, Helmig S, Tug S, Simon P, Kramer-Albers EM (2015) Physical exercise induces rapid release of small extracellular vesicles into the circulation. J Extracell Vesicles 4:28239

Article  PubMed  Google Scholar 

Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

Article  CAS  PubMed  Google Scholar 

D’Souza RF, Woodhead JST, Zeng N, Blenkiron C, Merry TL, Cameron-Smith D, Mitchell CJ (2018) Circulatory exosomal miRNA following intense exercise is unrelated to muscle and plasma miRNA abundances. Am J Physiol Endocrinol Metab 315:E723–E733

Article  CAS  PubMed  Google Scholar 

Guescini M, Canonico B, Lucertini F, Maggio S, Annibalini G, Barbieri E, Luchetti F, Papa S, Stocchi V (2015) Muscle releases alpha-sarcoglycan positive extracellular vesicles carrying miRNAs in the bloodstream. PLoS One 10:e0125094

Article  PubMed  PubMed Central  Google Scholar 

Annibalini G, Contarelli S, Lucertini F, Guescini M, Maggio S, Ceccaroli P, Gervasi M, Ferri Marini C, Fardetti F, Grassi E et al (2019) Muscle and systemic molecular responses to a single flywheel based iso-inertial training session in resistance-trained men. Front Physiol 10:554

Article  PubMed  PubMed Central  Google Scholar 

Sadovska L, Auders J, Keisa L, Romanchikova N, Silamikele L, Kreismane M, Zayakin P, Takahashi S, Kalnina Z, Line A (2021) Exercise-induced extracellular vesicles delay the progression of prostate cancer. Front Mol Biosci 8:784080

Article  CAS  PubMed  Google Scholar 

Zhang Y, Kim JS, Wang TZ, Newton RU, Galvao DA, Gardiner RA, Hill MM, Taaffe DR (2021) Potential role of exercise induced extracellular vesicles in prostate cancer suppression. Front Oncol 11:746040

Article  CAS  PubMed  PubMed Central  Google Scholar 

Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, Geuze HJ (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183:1161–1172

Article  CAS  PubMed  Google Scholar 

Mesri M, Altieri DC (1998) Endothelial cell activation by leukocyte microparticles. J Immunol 161:4382–4387

Article  CAS  PubMed  Google Scholar 

Hess C, Sadallah S, Hefti A, Landmann R, Schifferli JA (1999) Ectosomes released by human neutrophils are specialized functional units. J Immunol 163:4564–4573

Article  CAS  PubMed  Google Scholar 

Bydak B, Pierdona TM, Seif S, Sidhom K, Obi PO, Labouta HI, Gordon JW, Saleem A (2022) Characterizing extracellular vesicles and particles derived from skeletal muscle myoblasts and myotubes and the effect of acute contractile activity. Membranes (Basel) 12

CAS  PubMed  Google Scholar 

Emanueli C, Shearn AI, Angelini GD, Sahoo S (2015) Exosomes and exosomal miRNAs in cardiovascular protection and repair. Vascul Pharmacol 71:24–30

Article  CAS  PubMed  PubMed Central  Google Scholar 

Doncheva AI, Romero S, Ramirez-Garrastacho M, Lee S, Kolnes KJ, Tangen DS, Olsen T, Drevon CA, Llorente A, Dalen KT et al (2022) Extracellular vesicles and microRNAs are altered in response to exercise, insulin sensitivity and overweight. Acta Physiol (Oxf) 236:e13862

Article  CAS  PubMed  Google Scholar 

Doyle LM, Wang MZ (2019) Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells 8

PubMed  PubMed Central  Google Scholar 

Zaborowski MP, Balaj L, Breakefield XO, Lai CP (2015) Extracellular vesicles: composition, biological relevance, and methods of study. Bioscience 65:783–797

Article  PubMed  PubMed Central  Google Scholar 

Rome S, Forterre A, Mizgier ML, Bouzakri K (2019) Skeletal muscle-released extracellular vesicles: state of the art. Front Physiol 10:929

Article  PubMed  PubMed Central  Google Scholar 

Guay C, Regazzi R (2017) Exosomes as new players in metabolic organ cross-talk. Diabetes Obes Metab 19(Suppl 1):137–146

Article  PubMed  Google Scholar 

Whitham M, Parker BL, Friedrichsen M, Hingst JR, Hjorth M, Hughes WE, Egan CL, Cron L, Watt KI, Kuchel RP et al (2018) Extracellular vesicles provide a means for tissue crosstalk during exercise. Cell Metab 27(237–251):e234

Google Scholar 

Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK et al (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7:1535750

Article  PubMed  PubMed Central  Google Scholar 

Maacha S, Bhat AA, Jimenez L, Raza A, Haris M, Uddin S, Grivel JC (2019) Extracellular vesicles-mediated intercellular communication: roles in the tumor microenvironment and anti-cancer drug resistance. Mol Cancer 18:55

Article  PubMed  PubMed Central  Google Scholar 

Vechetti IJ Jr, Valentino T, Mobley CB, McCarthy JJ (2021) The role of extracellular vesicles in skeletal muscle and systematic adaptation to exercise. J Physiol 599:845–861

Article  CAS  PubMed  Google Scholar 

Darkwah S, Park EJ, Myint PK, Ito A, Appiah MG, Obeng G, Kawamoto E, Shimaoka M (2021) Potential roles of muscle-derived extracellular vesicles in remodeling cellular microenvironment: Proposed implications of the exercise-induced myokine, irisin. Front Cell Dev Biol 9:634853

Article  PubMed  PubMed Central  Google Scholar 

Ismaeel A, Van Pelt DW, Hettinger ZR, Fu X, Richards CI, Butterfield TA, Petrocelli JJ, Vechetti IJ, Confides AL, Drummond MJ et al (2023) Extracellular vesicle distribution and localization in skeletal muscle at rest and following disuse atrophy. Skelet Muscle 13:6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jalabert A, Vial G, Guay C, Wiklander OP, Nordin JZ, Aswad H, Forterre A, Meugnier E, Pesenti S, Regazzi R et al (2016) Exosome-like vesicles released from lipid-induced insulin-resistant muscles modulate gene expression and proliferation of beta recipient cells in mice. Diabetologia 59:1049–1058

Article  CAS  PubMed  Google Scholar 

Leuchtmann AB, Adak V, Dilbaz S, Handschin C (2021) The role of the skeletal muscle secretome in mediating endurance and resistance training adaptations. Front Physiol 12:709807

Article  PubMed  PubMed Central  Google Scholar 

Hartwig S, Raschke S, Knebel B, Scheler M, Irmler M, Passlack W, Muller S, Hanisch FG, Franz T, Li X et al (2014) Secretome profiling of primary human skeletal muscle cells. Biochim Biophys Acta 1844:1011–1017

Article  CAS  PubMed  Google Scholar 

Eckardt K, Gorgens SW, Raschke S, Eckel J (2014) Myokines in insulin resistance and type 2 diabetes. Diabetologia 57:1087–1099

Article  CAS  PubMed  Google Scholar 

O’Leary MF, Wallace GR, Bennett AJ, Tsintzas K, Jones SW (2017) IL-15 promotes human myogenesis and mitigates the detrimental effects of TNFalpha on myotube development. Sci Rep 7:12997

Article  ADS  PubMed  PubMed Central  Google Scholar 

Gomarasca M, Banfi G, Lombardi G (2020) Myokines: the endocrine coupling of skeletal muscle and bone. Adv Clin Chem 94:155–218

Article  CAS  PubMed  Google Scholar 

Huh JY (2018) The role of exercise-induced myokines in regulating metabolism. Arch Pharm Res 41:14–29

Article 

留言 (0)

沒有登入
gif