The role of m6A methylation in osteosarcoma biological processes and its potential clinical value

Lin YH, Jewell BE, Gingold J, Lu L, Zhao R, Wang LL, et al. Osteosarcoma: molecular pathogenesis and iPSC modeling. Trends Mol Med. 2017;23(8):737–55. https://doi.org/10.1016/j.molmed.2017.06.004.

CAS  Article  Google Scholar 

Smrke A, Anderson PM, Gulia A, Gennatas S, Huang PH, Jones RL. Future directions in the treatment of osteosarcoma. Cells-Basel. 2021;10(1):172. https://doi.org/10.3390/cells10010172.

CAS  Article  Google Scholar 

Smeland S, Bielack SS, Whelan J, Bernstein M, Hogendoorn P, Krailo MD, et al. Survival and prognosis with osteosarcoma: outcomes in more than 2000 patients in the EURAMOS-1 (European and American Osteosarcoma Study) cohort. Eur J Cancer. 2019;109:36–50. https://doi.org/10.1016/j.ejca.2018.11.027.

Article  Google Scholar 

Klein MJ, Siegal GP. Osteosarcoma: anatomic and histologic variants. Am J Clin Pathol. 2006;125(4):555–81. https://doi.org/10.1309/UC6K-QHLD-9LV2-KENN.

Article  Google Scholar 

Jamali Z, Taheri Anganeh M, Shabaninejad Z, Keshavarzi A, Taghizadeh H, Razavi ZS, et al. Autophagy regulation bymicroRNAs: novel insights into osteosarcoma therapy. IUBMB Life. 2020;72(7):1306–21. https://doi.org/10.1002/iub.2277.

CAS  Article  Google Scholar 

Marchandet L, Lallier M, Charrier C, Baud’Huin M, Ory B, Lamoureux F. Mechanisms of resistance to conventional therapies for osteosarcoma. Cancers. 2021. https://doi.org/10.3390/cancers13040683.

Article  Google Scholar 

Harrison DJ, Geller DS, Gill JD, Lewis VO, Gorlick R. Current and future therapeutic approaches for osteosarcoma. Expert Rev Anticancer Ther. 2018;18(1):39–50. https://doi.org/10.1080/14737140.2018.1413939.

CAS  Article  Google Scholar 

Chen Y, Hong T, Wang S, Mo J, Tian T, Zhou X. Epigenetic modification of nucleic acids: from basic studies to medical applications. Chem Soc Rev. 2017;46(10):2844–72. https://doi.org/10.1039/c6cs00599c.

CAS  Article  Google Scholar 

Wang B, Li X, Yu D, Chen X, Tabudravu J, Deng H, et al. Deletion of the epigenetic regulator GcnE in Aspergillus niger FGSC A1279 activates the production of multiple polyketide metabolites. Microbiol Res. 2018;217:101–7. https://doi.org/10.1016/j.micres.2018.10.004.

CAS  Article  Google Scholar 

Zhao Z, Meng J, Su R, Zhang J, Chen J, Ma X, et al. Epitranscriptomics in liver disease: basic concepts and therapeutic potential. J Hepatol. 2020;73(3):664–79. https://doi.org/10.1016/j.jhep.2020.04.009.

CAS  Article  Google Scholar 

Yao L, Yin H, Hong M, Wang Y, Yu T, Teng Y, et al. RNA methylation in hematological malignancies and its interactions with other epigenetic modifications. Leukemia. 2021. https://doi.org/10.1038/s41375-021-01225-1.

Article  Google Scholar 

Chen X, Sun YZ, Liu H, Zhang L, Li JQ, Meng J. RNA methylation and diseases: experimental results, databases. Web Servers Comput Models. 2019;20(3):896–917. https://doi.org/10.1093/bib/bbx142.

CAS  Article  Google Scholar 

Komal S, Zhang L, Han S. Potential regulatory role of epigenetic RNA methylation in cardiovascular diseases. Biomed Pharmacother. 2021;137:111376. https://doi.org/10.1016/j.biopha.2021.111376.

CAS  Article  Google Scholar 

Xu R, Pang G, Zhao Q, Yang L, Chen S, Jiang L, et al. The momentous role of N6-methyladenosine in lung cancer. J Cell Physiol. 2020;5(236):3244–56.

Google Scholar 

Li Y, Qi D, Zhu B, Ye X. Analysis of m6A RNA methylation-related genes in liver hepatocellular carcinoma and their correlation with survival. Int J Mol Sci. 2021;22(3):1474. https://doi.org/10.3390/ijms22031474.

CAS  Article  Google Scholar 

Lv Z, Sun L, Xu Q, Xing C, Yuan Y. Joint analysis of lncRNA m6A methylome and lncRNA/mRNA expression profiles in gastric cancer. Cancer Cell Int. 2020. https://doi.org/10.1186/s12935-020-01554-8.

Article  Google Scholar 

Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci USA. 1974;71(10):3971–5. https://doi.org/10.1073/pnas.71.10.3971.

CAS  Article  Google Scholar 

Sun T, Wu R, Ming L. The role of m6A RNA methylation in cancer. Biomed Pharmacother. 2019;112:108613. https://doi.org/10.1016/j.biopha.2019.108613.

CAS  Article  Google Scholar 

Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485(7397):201–6. https://doi.org/10.1038/nature11112.

CAS  Article  Google Scholar 

Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in 3′UTRs and near stop codons. Cell. 2012;149(7):1635–46. https://doi.org/10.1016/j.cell.2012.05.003.

CAS  Article  Google Scholar 

Fu Y, Dominissini D, Rechavi G, He C. Gene expression regulation mediated through reversible m(6)A RNA methylation. Nat Rev Genet. 2014;15(5):293–306. https://doi.org/10.1038/nrg3724.

CAS  Article  Google Scholar 

Niu Y, Zhao X, Wu Y, Li M, Wang X, Yang Y. N6-methyl-adenosine (m6A) in RNA: an Old Modification with a novel epigenetic function. Genomics Proteomics Bioinform. 2013;11(1):8–17. https://doi.org/10.1016/j.gpb.2012.12.002.

CAS  Article  Google Scholar 

Du J, Hou K, Mi S, Ji H, Ma S, Ba Y, et al. Malignant evaluation and clinical prognostic values of m6A RNA methylation regulators in glioblastoma. Front Oncol. 2020;10:208. https://doi.org/10.3389/fonc.2020.00208.

Article  Google Scholar 

Shi H, Wei J, He C. Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers. Mol Cell. 2019;74(4):640–50. https://doi.org/10.1016/j.molcel.2019.04.025.

CAS  Article  Google Scholar 

Huang J, Chen Z, Chen X, Chen J, Cheng Z, Wang Z. The role of RNA N6-methyladenosine methyltransferase in cancers. Mol Ther Nucl Acids. 2021;23:887–96. https://doi.org/10.1016/j.omtn.2020.12.021.

CAS  Article  Google Scholar 

Garcias Morales D, Reyes JL. A birds’-eye view of the activity and specificity of the mRNA m6A methyltransferase complex. WIREs RNA. 2021. https://doi.org/10.1002/wrna.1618.

Article  Google Scholar 

Bujnicki JM, Feder M, Radlinska M, Blumenthal RM. Structure prediction and phylogenetic analysis of a functionally diverse family of proteins homologous to the MT-A70 subunit of the human mRNA:m(6)A methyltransferase. J Mol Evol. 2002;55(4):431–44. https://doi.org/10.1007/s00239-002-2339-8.

CAS  Article  Google Scholar 

Bokar JA, Rath-Shambaugh ME, Ludwiczak R, Narayan P, Rottman F. Characterization and partial purification of mRNA N6-adenosine methyltransferase from HeLa cell nuclei: internal mRNA methylation requires a multisubunit complex. J Biol Chem. 1994;269(26):17697–704.

CAS  Article  Google Scholar 

Tuck MT. Partial purification of a 6-methyladenine mRNA methyltransferase which modifies internal adenine residues. Biochem J. 1992;288(Pt 1):233–40. https://doi.org/10.1042/bj2880233.

CAS  Article  Google Scholar 

Wang P, Doxtader KA, Nam Y. Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Mol Cell. 2016;63(2):306–17. https://doi.org/10.1016/j.molcel.2016.05.041.

CAS  Article  Google Scholar 

Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, et al. A METTL3–METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 2014;10(2):93–5. https://doi.org/10.1038/nchembio.1432.

CAS  Article  Google Scholar 

Xiao-Li PBSL. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 2014;24(2):177–89. https://doi.org/10.1038/cr.2014.3.

CAS  Article  Google Scholar 

Yue Y, Liu J, Cui X, Cao J, Luo G, Zhang Z, et al. VIRMA mediates preferential m(6)A mRNA methylation in 3’UTR and near stop codon and associates with alternative polyadenylation. Cell Discov. 2018;4:10. https://doi.org/10.1038/s41421-018-0019-0.

CAS  Article  Google Scholar 

Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, et al. N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 2011;7(12):885–7. https://doi.org/10.1038/nchembio.687.

CAS  Article  Google Scholar 

Fu Y, Jia G, Pang X, Wang RN, Wang X, Li CJ, et al. FTO-mediated formation of N6-hydroxymethyladenosine and N6-formyladenosine in mammalian RNA. Nat Commun. 2013. https://doi.org/10.1038/ncomms2822.

Article  Google Scholar 

Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang C, Li CJ, et al. ALKBH5 Is a mammalian RNA Demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 2013;49(1):18–29. https://doi.org/10.1016/j.molcel.2012.10.015.

CAS  Article  Google Scholar 

Xu Y, Zhang W, Shen F, Yang X, Liu H, Dai S, et al. YTH domain proteins: a family of m6A readers in cancer progression. Front Oncol. 2021. https://doi.org/10.3389/fonc.2021.629560.

Article  Google Scholar 

Roundtree IA, Luo GZ, Zhang Z, Wang X, Zhou T, Cui Y, et al. YTHDC1 mediates nuclear export of N(6)-methyladenosine methylated mRNAs. Elife. 2017. https://doi.org/10.7554/eLife.31311.

Article  Google Scholar 

Kasowitz SD, Ma J, Anderson SJ, Leu NA, Xu Y, Gregory BD, et al. Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development. Plos Genet. 2018;14(5):e1007412. https://doi.org/10.1371/journal.pgen.1007412.

CAS  Article  Google Scholar 

Liu X, Qin J, Gao T, Li C, He B, Pan B, et al. YTHDF1 Facilitates the progression of hepatocellular carcinoma by promoting FZD5 mRNA translation in an m6A-dependent manner. Mol Ther Nucleic Acids. 2020;22:750–65. https://doi.org/10.1016/j.omtn.2020.09.036.

CAS  Article  Google Scholar 

Chen M, Wei L, Law CT, Tsang FH, Shen J, Cheng CL, et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology. 2018;67(6):2254–70. https://doi.org/10.1002/hep.29683.

CAS  Article  Google Scholar 

Chang G, Shi L, Ye Y, Shi H, Zeng L, Tiwary S, et al. YTHDF3 induces the translation of m(6)A-enriched gene transcripts to promote breast cancer brain metastasis. Cancer Cell. 2020;38(6):857–71. https://doi.org/10.1016/j.ccell.2020.10.004.

CAS  Article  Google Scholar 

Ma L, Chen T, Zhang X, Miao Y, Tian X, Yu K, et al. The m(6)A reader YTHDC2 inhibits lung adenocarcinoma tumorigenesis by suppressing SLC7A11-dependent antioxidant function. Redox Biol. 2021;38:101801. https://doi.org/10.1016/j.redox.2020.101801.

CAS  Article  Google Scholar 

Pan Y, Xiao K, Li Y, Li Y, Liu Q. RNA N6-methyladenosine regulator-mediated methylation modifications pattern and immune infiltration features in glioblastoma. Front Oncol. 2021;11:632934. https://doi.org/10.3389/fonc.2021.632934.

Article  Google Scholar 

Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, et al. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 2018;20(3):285–95. https://doi.org/10.1038/s41556-018-0045-z.

CAS  Article  Google Scholar 

Zhu S, Wang JZ, Chen, He YT, Meng N, Chen M, et al. An oncopeptide regulates m(6)A recognition by the m(6)A reader IGF2BP1 and tumorigenesis. Nat Commun. 2020;11(1):1685. https://doi.org/10.1038/s41467-020-15403-9

Gao S, Gu Y, Niu S, Wang Y, Duan L, Pan Y, et al. DMDRMR-mediated regulation of m6A-modified CDK4 by m6A reader IGF2BP3 drives ccRCC

留言 (0)

沒有登入
gif