Atto 465 Derivative Is a Nuclear Stain with Unique Excitation and Emission Spectra Useful for Multiplex Immunofluorescence Histochemistry

1. Sood, A, Miller, AM, Brogi, E, Sui, Y, Armenia, J, McDonough, E, Santamaria-Pang, A, Carlin, S, Stamper, A, Campos, C, Pang, Z, Li, Q, Port, E, Graeber, TG, Schultz, N, Ginty, F, Larson, SM, Mellinghoff, IK. Multiplexed immunofluorescence delineates proteomic cancer cell states associated with metabolism. JCI Insight. 2016;1(6):e87030. doi:10.1172/jci.insight.87030.
Google Scholar | Crossref2. Gorris, MAJ, Halilovic, A, Rabold, K, van Duffelen, A, Wickramasinghe, IN, Verweij, D, Wortel, IMN, Textor, JC, de Vries, IJM, Figdor, CG. Eight-color multiplex immunohistochemistry for simultaneous detection of multiple immune checkpoint molecules within the tumor microenvironment. J Immunol. 2018;200(1):347–54. doi:10.4049/jimmunol.1701262.
Google Scholar | Crossref3. Hofman, P, Badoual, C, Henderson, F, Berland, L, Hamila, M, Long-Mira, E, Lassalle, S, Roussel, H, Hofman, V, Tartour, E, Ilié, M. Multiplexed immunohistochemistry for molecular and immune profiling in lung cancer—just about ready for prime-time? Cancers (Basel). 2019;11(3):283. doi:10.3390/cancers11030283.
Google Scholar | Crossref4. Goto, S, Morigaki, R, Okita, S, Nagahiro, S, Kaji, R. Development of a highly sensitive immunohistochemical method to detect neurochemical molecules in formalin-fixed and paraffin-embedded tissues from autopsied human brains. Front Neuroanat. 2015;9:22. doi:10.3389/fnana.2015.00022.
Google Scholar | Crossref5. Bogoslovsky, T, Bernstock, JD, Bull, G, Gouty, S, Cox, BM, Hallenbeck, JM, Maric, D. Development of a systems-based in situ multiplex biomarker screening approach for the assessment of immunopathology and neural tissue plasticity in male rats after traumatic brain injury. J Neurosci Res. 2018;96(4):487–500. doi:10.1002/jnr.24054.
Google Scholar | Crossref6. Dixon, AR, Bathany, C, Tsuei, M, White, J, Barald, KF, Takayama, S. Recent developments in multiplexing techniques for immunohistochemistry. Expert Rev Mol Diagn. 2015;15(9):1171–86. doi:10.1586/14737159.2015.1069182.
Google Scholar | Crossref7. Saka, SK, Wang, Y, Kishi, JY, Zhu, A, Zeng, Y, Xie, W, Kirli, K, Yapp, C, Cicconet, M, Beliveau, BJ, Lapan, SW, Yin, S, Lin, M, Boyden, ES, Kaeser, PS, Pihan, G, Church, GM, Yin, P. Immuno-SABER enables highly multiplexed and amplified protein imaging in tissues. Nat Biotechnol. 2019;37(9):1080–90. doi:10.1038/s41587-019-0207-y.
Google Scholar | Crossref8. Goltsev, Y, Samusik, N, Kennedy-Darling, J, Bhate, S, Hale, M, Vazquez, G, Black, S, Nolan, GP. Deep profiling of mouse splenic architecture with CODEX multiplexed imaging. Cell. 2018;174(4):968–81.e15. doi:10.1016/j.cell.2018.07.010.
Google Scholar | Crossref9. Wang, G, Achim, CL, Hamilton, RL, Wiley, CA, Soontornniyomkij, V. Tyramide signal amplification method in multiple-label immunofluorescence confocal microscopy. Methods. 1999;18(4):459–64. doi:10.1006/meth.1999.0813.
Google Scholar | Crossref10. Toth, ZE, Mezey, E. Simultaneous visualization of multiple antigens with tyramide signal amplification using antibodies from the same species. J Histochem Cytochem. 2007;55(6):545–54. doi:10.1369/jhc.6A7134.2007.
Google Scholar | SAGE Journals11. Macechko, PT, Krueger, L, Hirsch, B, Erlandsen, SL. Comparison of immunologic amplification vs enzymatic deposition of fluorochrome-conjugated tyramide as detection systems for FISH. J Histochem Cytochem. 1997;45(3):359–63. doi:10.1177/002215549704500303.
Google Scholar | SAGE Journals12. van Gijlswijk, RP, Zijlmans, HJ, Wiegant, J, Bobrow, MN, Erickson, TJ, Adler, KE, Tanke, HJ, Raap, AK. Fluorochrome-labeled tyramides: use in immunocytochemistry and fluorescence in situ hybridization. J Histochem Cytochem. 1997;45(3):375–82. doi:10.1177/002215549704500305.
Google Scholar | SAGE Journals13. Arden-Jacob, J, Drexhage, KH, Druzhinin, SI, Ekimova, M, Flender, O, Lenzer, T, Oum, K, Scholz, M. Ultrafast photoinduced dynamics of the 3,6-diaminoacridinium derivative ATTO 465 in solution. Phys Chem Chem Phys. 2013;15(6):1844–53. doi:10.1039/c2cp43493h.
Google Scholar | Crossref14. Feng, Z, Jensen, SM, Messenheimer, DJ, Farhad, M, Neuberger, M, Bifulco, CB, Fox, BA. Multispectral imaging of T and B cells in murine spleen and tumor. J Immunol. 2016;196(9):3943–50. doi:10.4049/jimmunol.1502635.
Google Scholar | Crossref15. Doyle, AD, Wang, FW, Matsumoto, K, Yamada, KM. One-dimensional topography underlies three-dimensional fibrillar cell migration. J Cell Biol. 2009;184(4):481–90. doi:10.1083/jcb.200810041.
Google Scholar | Crossref16. Schindelin, J, Arganda-Carreras, I, Frise, E, Kaynig, V, Longair, M, Pietzsch, T, Preibisch, S, Rueden, C, Saalfeld, S, Schmid, B, Tinevez, JY, White, DJ, Hartenstein, V, Eliceiri, K, Tomancak, P, Cardona, A. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82. doi:10.1038/nmeth.2019.
Google Scholar | Crossref17. Costes, SV, Daelemans, D, Cho, EH, Dobbin, Z, Pavlakis, G, Lockett, S. Automatic and quantitative measurement of protein-protein colocalization in live cells. Biophys J. 2004;86(6):3993–4003. doi:10.1529/biophysj.103.038422.
Google Scholar | Crossref18. Hermanson, GT . Bioconjugate techniques. San Diego: Academic Press; 2013.
Google Scholar19. Suzuki, T, Fujikura, K, Higashiyama, T, Takata, K. DNA staining for fluorescence and laser confocal microscopy. J Histochem Cytochem. 1997;45(1):49–53. doi:10.1177/002215549704500107.
Google Scholar | SAGE Journals20. Ge, J, Wood, DK, Weingeist, DM, Prasongtanakij, S, Navasumrit, P, Ruchirawat, M, Engelward, BP. Standard fluorescent imaging of live cells is highly genotoxic. Cytometry A. 2013;83(6):552–60. doi:10.1002/cyto.a.22291.
Google Scholar | Crossref21. Karg, TJ, Golic, KG. Photoconversion of DAPI and Hoechst dyes to green and red-emitting forms after exposure to UV excitation. Chromosoma. 2018;127(2):235–45. doi:10.1007/s00412-017-0654-5.
Google Scholar | Crossref22. Ando, R, Hama, H, Yamamoto-Hino, M, Mizuno, H, Miyawaki, A. An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc Natl Acad Sci U S A. 2002;99(20):12651–6. doi:10.1073/pnas.202320599.
Google Scholar | Crossref23. Tsutsui, H, Karasawa, S, Shimizu, H, Nukina, N, Miyawaki, A. Semi-rational engineering of a coral fluorescent protein into an efficient highlighter. EMBO Rep. 2005; 6(3):233–8. doi:10.1038/sj.embor.7400361.
Google Scholar | Crossref24. Chudakov, DM, Verkhusha, VV, Staroverov, DB, Souslova, EA, Lukyanov, S, Lukyanov, KA. Photoswitchable cyan fluorescent protein for protein tracking. Nat Biotechnol. 2004;22(11):1435–9. doi:10.1038/nbt1025.
Google Scholar | Crossref25. Patterson, GH, Lippincott-Schwartz, J. A photoactivatable GFP for selective photolabeling of proteins and cells. Science. 2002;297(5588):1873–7. doi:10.1126/science.1074952.
Google Scholar | Crossref26. Verkhusha, VV, Sorkin, A. Conversion of the monomeric red fluorescent protein into a photoactivatable probe. Chem Biol. 2005;12(3):279–85. doi:10.1016/j.chembiol.2005.01.005.
Google Scholar | Crossref

留言 (0)

沒有登入
gif