Evaluation of PGP 9.5, NGFR, TGFβ1, FGFR1, MMP-2, AT2R2, SHH, and TUNEL in Primary Obstructive Megaureter Tissue

1. Cussen, LJ. Dimensions of the normal ureter in infancy and childhood. Invest Urol. 1967;5(2):164–78.
Google Scholar2. Stoll, C, Alembik, Y, Roth, MP, Dott, B, Sauvage, P. Risk factors in internal urinary system malformations. Pediatr Nephrol. 1990;4:319–23.
Google Scholar | Crossref3. Shokeir, AA, Nijman, RJM. Primary megaureter: current trends in diagnosis and treatment. BJU Int. 2001;86(7):861–8.
Google Scholar | Crossref4. Baskin, LS, Zderic, SA, Snyder, HM, Duckett, JW. Primary dilated megaureter: long-term followup. J Urol. 1994;152:618–21.
Google Scholar | Crossref5. Hanna, MK, Jeffs, RD, Sturgess, JM, Barkin, M. Ureteral structure and ultrastructure. Part II. Congenital ureteropelvic junction obstruction and primary obstructive megaureter. J Urol. 1976;116:725–30.
Google Scholar | Crossref6. Lee, BR, Silver, RI, Partin, AW, Epstein, JI, Gearhart, JP. A quantitative histologic analysis of collagen subtypes: the primary obstructed and refluxing megaureter of childhood. Urology. 1998;51:820–3.
Google Scholar | Crossref7. Mackinnon, KJ, Foote, JW, Wiglesworth, FW, Blennerhassett, JB. The pathology of the adynamic distal ureteral segment. J Urol. 1970;103:134–7.
Google Scholar | Crossref8. Osaka, H, Wang, YL, Takada, K, Takizawa, S, Setsuie, R, Li, H, Sato, Y, Nishikawa, K, Sun, Y, Sakurai, M, Harada, T, Hara, Y, Kimura, I, Chiba, S, Namikawa, K, Kiyama, H, Noda, M, Aoki, S, Wada, K. Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron. Hum Mol Genet. 2003;12(16):1945–58.
Google Scholar | Crossref9. Edyvane, KA, Trussell, DC, Jonavicius, J, Henwood, A, Marchall, VR. Presence and regional variation in peptide-containing nerves in the human ureter. J Auton Nerv Syst. 1992;39(2):127–37.
Google Scholar | Crossref10. Day, IN, Thompson, RJ. UCHL1 (PGP 9.5): neuronal biomarker and ubiquitin system protein. Prog Neurobiol. 2010;90(3):327–62.
Google Scholar | Crossref11. Liu, HT, Kuo, HC. Urinary nerve growth factor levels are increased in patients with bladder outlet obstruction with overactive bladder symptoms and reduced after successful medical treatment. Urology. 2008;72(1):104–8.
Google Scholar | Crossref12. Vizza, D, Perris, A, Toteda, G, Lupinacci, S, Perrotta, I, Lofaro, D, Leone, F, Gigliotti, P, La Russa, A, Bonofiglio, R. Rapamycin-induced autophagy protects proximal tubular renal cells against proteinuric damage through the transcriptional activation of the nerve growth factor receptor NGFR. Autophagy. 2018;14(6):1028–42.
Google Scholar13. Kurtzeborn, K, Cebrian, C, Kuure, S. Regulation of renal differentiation by trophic factors. Front Physiol. 2018;9:1588.
Google Scholar | Crossref14. Morikawa, M, Derynck, R, Miyazono, K. TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology. Cold Spring Harb Perspect Biol. 2016;8(5):a021873.
Google Scholar | Crossref15. Ueshima, E, Fujimori, M, Kodama, H, Felsen, D, Chen, J, Durack, JC, Solomon, SB, Coleman, JA, Srimathveeravalli, G. Macrophage-secreted TGF-β 1 contributes to fibroblast activation and ureteral stricture after ablation injury. Am J Physiol Renal Physiol. 2019;317(1):F52–64.
Google Scholar | Crossref16. Nicotina, PA, Romeo, C, Arena, F, Romeo, G. Segmental up-regulation of transforming growth factor-beta in the pathogenesis of primary megaureter. An immunocytochemical study. Br J Urol. 1997;80(6):946–9.
Google Scholar | Crossref17. Jackson, L, Woodward, M, Coward, RJ. The molecular biology of pelvi-ureteric junction obstruction. Pediatr Nephrol. 2018;33(4):553–71.
Google Scholar | Crossref18. Siregar, S, Noegroho, BS, Karim, MI. The effect of intravenous human adipose-derived stem cells (hADSC) on transforming growth factor β1 (TGF-β1), collagen type 1, and kidney histopathological features in the unilateral ureteropelvic junction obstruction model of wistar rats. Turk J Urol. 2020;46(3):236–42.
Google Scholar19. Ozturk, E, Telli, O, Gokce, MI, Ozcan, C, Okutucu, TM, Soygur, T, Burgu, B. Effects of transforming growth factor on the developing embryonic ureter: an in-vitro megaureter model in mice. J Pediatr Urol. 2016;12(5):310.e1–4.
Google Scholar | Crossref20. Walker, KA, Sims-Lucas, S, Bates, CM. Fibroblast growth factor receptor signaling in kidney and lower urinary tract development. Pediatr Nephrol. 2016;31(6):885–95.
Google Scholar | Crossref21. Yamaguchi, TP, Harpal, K, Henkemeyer, M, Rossant, J. FGFR-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation. Genes Dev. 1994;8:3032–44.
Google Scholar | Crossref22. Henriet, P, Emonard, H. Matrix metalloproteinase-2: not (just) a “hero” of the past. Biochimie. 2019;166:223–32.
Google Scholar | Crossref23. Du, X, Shimizu, A, Masuda, Y, Kuwahara, N, Arai, T, Kataoka, M, Uchiyama, M, Kaneko, T, Akimoto, T, Iino, Y, Fukuda, Y. Involvement of matrix metalloproteinase-2 in the development of renal interstitial fibrosis in mouse obstructive nephropathy. Lab Invest. 2012;92(8):1149–60.
Google Scholar | Crossref24. Herichova, I, Szantoova, K. Renin-angiotensin system: upgrade of recent knowledge and perspectives. Endocr Regul. 2013;47(1):39–52.
Google Scholar | Crossref25. Niimura, F, Kon, V, Ichikawa, I. The renin-angiotensin system in the development of the congenital anomalies of the kidney and urinary tract. Curr Opin Pediatr. 2006;18(2):161–6.
Google Scholar | Crossref26. Song, R, Spera, M, Garrett, C, El-Dahr, SS, Yosypiv, IV. Angiotensin II AT2 receptor regulates ureteric bud morphogenesis. Am J Physiol Renal Physiol. 2010;298(3):F807–17.
Google Scholar | Crossref27. Vaillant, C, Monard, D. SHH pathway and cerebellar development. Cerebellum. 2009;8(3):291–301.
Google Scholar | Crossref28. Jenkins, D, Winyard, PJ, Woolf, AS. Immunohistochemical analysis of Sonic hedgehog signalling in normal human urinary tract development. J Anat. 2007;211(5):620–9.
Google Scholar | Crossref29. Yu, J, Carroll, TJ, McMahon, AP. Sonic hedgehog regulates proliferation and differentiation of mesenchymal cells in the mouse metanephric kidney. Development. 2002;129(22):5301–12.
Google Scholar | Crossref30. Airik, R, Kispert, A. Down the tube of obstructive nephropathies: the importance of tissue interactions during ureter development. Kidney Int. 2007;72(12):1459–67.
Google Scholar | Crossref31. Bohnenpoll, T, Wittern, AB, Mamo, TM, Weiss, A, Rudat, C, Kleppa, M, Schuster-Gossler, K, Wojahn, I, Lüdtke, TH, Trowe, M, Kispert, A. A SHH-FOXF1-BMP4 signaling axis regulating growth and differentiation of epithelial and mesenchymal tissues in ureter development. PLoS Genet. 2017;13(8):e1006951.
Google Scholar | Crossref32. Crowley, LC, Marfell, BJ, Waterhouse, NJ. Detection of DNA fragmentation in apoptotic cells by TUNEL. Cold Spring Harb Protoc. 2016;2016(10):900–5. doi:10.1101/pdb.prot08722.
Google Scholar | Crossref33. Wang, YP, Chen, X, Zhang, ZK, Cui, HY, Wang, P, Wang, Y. Increased renal apoptosis and reduced renin-angiotensin system in fetal growth restriction. J Renin Angiotensin Aldosterone Syst. 2016;17(3):1–7.
Google Scholar | SAGE Journals34. Kim, HG, Paick, SH, Kwak, C, Kin, HH, Lho, YS. Serial microscopic changes in cell proliferation and apoptosis in obstructed ureter of rat. J Endourol. 2006;20(8):590–7.
Google Scholar | Crossref35. Kajbafzadeh, AM, Payabvash, S, Salmasi, AH, Monajemzadeh, M, Tavangar, SM. Smooth muscle cell apoptosis and defective neural development in congenital ureteropelvic junction obstruction. J Urol. 2006;176(2):718–23.
Google Scholar | Crossref36. Stefanini, M, De Martino, C, Zamboni, L. Fixation of ejaculated spermatozoa for electron microscopy. Nature. 1967;216(5111):173–4.
Google Scholar | Crossref37. Negoescu, A, Guillermet, C, Lorimier, P, Brambilla, E, Labat-Moleur, F. Importance of DNA fragmentation in apoptosis with regard to TUNEL specificity. Biomed Pharmacother. 1998;13:81–6.
Google Scholar38. Pilmane, M, Rumba, I, Sundler, F, Luts, A. Patterns of distribution and occurrence of neuroendocrine elements in lungs of humans with chronic lung disease. Proc Latv Acad Sci. 1998;52:144–52.
Google Scholar39. Riffenburgh, RH. Chapter 21—Regression and correlation. In: Riffenburgh, RH , editor. Statistics in medicine. 3rd ed. San Diego, CA: Elsevier Inc.; 2012. p. 443–72.
Google Scholar40. Riffenburgh, RH . Chapter 11—Tests on ranked data. In: Riffenburgh, RH , editor. Statistics in medicine. 3rd ed. San Diego, CA: Elsevier Inc.; 2012. p. 221–48.
Google Scholar | Crossref41. Joseph, DB. Chapter 21—Uterovesical junction anomalies: Megaureters. In: Gearhart, JP, Rink, RC, Mouriquand, PDE, editors. Pediatric urology. 2nd ed. San Diego, CA: Elsevier Inc; 2010. p. 272–82.
Google Scholar | Crossref42. Farrugia, MK, Hitchcock, R, Radford, A, Burki, T, Robb, A, Murphy, F, British Association of Pediatric Urologists. British Association of Pediatric Urologists consensus statement on the management of the primary obstructive megaureter. J Pediatr Urol. 2014;10(1):26–33.
Google Scholar | Crossref43. Vlad, M, Ionescu, N, Ispas, AT, Ungureanu, E, Stoica, C. Morphological study of congenital megaureter. Rom J Morphol Embryol. 2007;48(4):381–90.
Google Scholar44. Payabvash, S, Kajbafzadeh, A, Tavangar, SM, Monajemzadeh, M, Sadeghi, Z. Myocyte apoptosis in primary obstructive megaureters: the role of decreased vascular and neural supply. J Urol. 2007;178(1):259–64.
Google Scholar | Crossref45. Kang, HJ, Jun, JH, Han, SW. Proteomic analyses of molecular factors associated with obstructive megaureter dysfunction. Int J Clin Exp Med. 2019;12(9):11938–45.
Google Scholar46. Wang, Y, Puri, P, Hassan, J, Miyakita, H, Reen, DJ. Abnormal innervation and altered nerve growth factor messenger ribonucleic acid expression in ureteropelvic junction obstruction. J Urol. 1995;154(2 Pt 2):679–83.
Google Scholar47. Gündüz, M, Yurtçu, M, Toy, H, Abasiyanik, A, Demirci, S. Immunohistochemical and morphometric evaluation of neuronal dysfunction in pelviureteral junction obstruction. J Pediatr Urol. 2013;9(3):359–63.
Google Scholar | Crossref48. Eryıldırım, B, Tarhan, F, Gül, AE, Erbay, E, Kuyumcuoglu, U. Immunohistochemical analysis of low-affinity nerve growth factor receptor in the human urinary bladder. Urol Int. 2006;77:76–80.
Google Scholar | Crossref49. Hodges, JS, Werle, D, McLorie, G, Atala, A. Megaureter. Sci World J. 2010;10:603–12.
Google Scholar | Crossref50. Lopes, FM, Roberts, NA, Zeef, LA, Gardiner, NJ, Woolf, AS. Overactivity or blockade of transforming growth factor-β each generate a specific ureter malformation. J Pathol. 2019;249(4):472–84.
Google Scholar | Crossref51. Racetin, A, Raguž, F, Durdov, MG, Kunac, N, Saraga, M, Sanna-Cherchi, S, Šoljić, V, Martinović, V, Petračević, J, Kostić, S, Mardešić, S, Tomaš, SZ, Kablar, B, Restović, I, Lozić, M, Filipović, N, Saraga-Babić, M, Vukojević, K. Immunohistochemical expression pattern of RIP5, FGFR1, FGFR2 and HIP2 in the normal human kidney development. Acta Histochem. 2019;121(5):531–8.
Google Scholar | Crossref52. Liu, F, Wang, L, Qi, H, Wang, J, Wang, Y, Jiang, W, Liuqing, X, Liu, N, Zhuang, S. Nintedanib, a triple tyrosine kinase inhibitor, attenuates renal fibrosis in chronic kidney disease. Clin Sci. 2017;131(16):2125–43.
Google Scholar | Crossref53. Sun, HJ, Cai, WW, Gong, LL, Wang, X, Zhu, XX, Wan, MY, Wang, PY, Qiu, LY. FGF-2-mediated FGFR1 signaling in human microvascular endothelial cells is activated by vaccarin to promote angiogenesis. Biomed Pharm. 2017;95:144–52.
Google Scholar | Crossref54. Li, J, Shi, S, Srivastava, SP, Kitada, M, Nagai, T, Nitta, K, Kohno, M, Kanasaki, K, Koya, D. FGFR1 is critical for the anti-endothelial mesenchymal transition effect of N-acetyl-seryl-aspartyl-lysyl-proline via induction of the MAP4K4 pathway. Cell Death Dis. 2017;8(8):e2965.
Google Scholar | Crossref55. Levi, E, Fridman, R, Miao, HQ, Yayon, A, Vlodavsky, I. Matrix metalloproteinase 2 releases active soluble ectodomain of fibroblast growth factor receptor 1. Proc Natl Acad Sci USA. 1996;93(14):7069–74.
Google Scholar | Crossref56. Nishida, M, Okumura, Y, Ozawa, SI, Shiraishi, I, Itoi, T, Hamaoka, K. MMP-2 inhibition reduces renal macrophage infiltration with increased fibrosis in UUO. Biochem Biophys Res Commun. 2007;354(1):133–9.
Google Scholar | Crossref | Medline57. Kaya, C, Bogaert, G, Ridder, D, Schwentner, C, Fritsch, H, Oswald, J, Radmayr, C. Extracellular matrix degradation and reduced neural density in children with intrinsic ureteropelvic junction obstruction. Urology. 2010;76(1):185–9.
Google Scholar | Crossref58. Tveitarås, MK, Skogstrand, T, Leh, S, Helle, F, Iversen, BM, Chatziantoniou, C, Reed, RK, Hultström, M. Matrix metalloproteinase-2 knockout and heterozygote mice are protected from hydronephrosis and kidney fibrosis after unilateral ureteral obstruction. PLoS ONE. 2015;10(12):e0143390.
Google Scholar | Crossref59. Wang, C, Qian, X, Sun, X, Chang, Q. Angiotensin II increases matrix metalloproteinase 2 expression in human aortic smooth muscle cells via AT1R and ERK1/2. Exp Biol Med (Maywood). 2015;240(1):1564–71.
Google Scholar | Crossref60. Stewart, K, Tang, YC, Shafer, MER, Graham-Paquin, AL, Bouchard, M. Modulation of apoptotic response by LAR family phosphatases–cIAP1 signaling during urinary tract morphogenesis. Proc Natl Acad Sci USA. 2017;114(43):E9016–25.
Google Scholar | Crossref61. Tourchi, A, Kajbafzadeh, A, Ebadi, M, Tavangar, SM, Jarooghi, N. The association between impaired autophagy and the development of congenital ureteropelvic junction obstruction. Urology. 2014;84(6):1467–74.

留言 (0)

沒有登入
gif