Multi-modal Profiling of the Extracellular Matrix of Human Fallopian Tubes and Serous Tubal Intraepithelial Carcinomas

1. American Cancer Society . Cancer facts and figures 2021. Atlanta, GA: American Cancer Society; 2021.
Google Scholar2. Bowtell, DD, Bohm, S, Ahmed, AA, Aspuria, PJ, Bast, RC, Beral, V, Berek, JS, Birrer, MJ, Blagden, S, Bookman, MA, Brenton, JD, Chiappinelli, KB, Martins, FC, Coukos, G, Drapkin, R, Edmondson, R, Fotopoulou, C, Gabra, H, Galon, J, Gourley, C, Heong, V, Huntsman, DG, Iwanicki, M, Karlan, BY, Kaye, A, Lengyel, E, Levine, DA, Lu, KH, McNeish, IA, Menon, U, Narod, SA, Nelson, BH, Nephew, KP, Pharoah, P, Powell, DJ, Ramos, P, Romero, IL, Scott, CL, Sood, AK, Stronach, EA, Balkwill, FR. Rethinking ovarian cancer II: reducing mortality from high-grade serous ovarian cancer. Nat Rev Cancer. 2015;15(11):668–79.
Google Scholar | Crossref3. Lee, Y, Miron, A, Drapkin, R, Nucci, MR, Medeiros, F, Saleemuddin, A, Garber, J, Birch, C, Mou, H, Gordon, RW, Cramer, DW, McKeon, FD, Crum, CP. A candidate precursor to serous carcinoma that originates in the distal fallopian tube. J Pathol. 2007;211(1):26–35.
Google Scholar | Crossref | Medline4. Perets, R, Wyant, GA, Muto, KW, Bijron, JG, Poole, BB, Chin, KT, Chen, JY, Ohman, AW, Stepule, CD, Kwak, S, Karst, AM, Hirsch, MS, Setlur, SR, Crum, CP, Dinulescu, DM, Drapkin, R. Transformation of the fallopian tube secretory epithelium leads to high-grade serous ovarian cancer in brca;Tp53; Pten models. Cancer Cell. 2013;24(6):751–65.
Google Scholar | Crossref5. Ducie, J, Dao, F, Considine, M, Olvera, N, Shaw, PA, Kurman, RJ, Shih, IM, Soslow, RA, Cope, L, Levine, DA. Molecular analysis of high-grade serous ovarian carcinoma with and without associated serous tubal intra-epithelial carcinoma. Nat Commun. 2017;8(1):990.
Google Scholar | Crossref6. Kuhn, E, Kurman, RJ, Vang, R, Sehdev, AS, Han, G, Soslow, R, Wang, TL, Shih Ie, M. TP53 mutations in serous tubal intraepithelial carcinoma and concurrent pelvic high-grade serous carcinoma–evidence supporting the clonal relationship of the two lesions. J Pathol. 2012;226(3):421–6.
Google Scholar | Crossref7. Labidi-Galy, SI, Papp, E, Hallberg, D, Niknafs, N, Adleff, V, Noe, M, Bhattacharya, R, Novak, M, Jones, S, Phallen, J, Hruban, CA, Hirsch, MS, Lin, DI, Schwartz, L, Maire, CL, Tille, JC, Bowden, M, Ayhan, A, Wood, LD, Scharpf, RB, Kurman, R, Wang, TL, Shih, IM, Karchin, R, Drapkin, R, Velculescu, VE. High grade serous ovarian carcinomas originate in the fallopian tube. Nat Commun. 2017;8(1):1093.
Google Scholar | Crossref | Medline8. Bonnans, C, Chou, J, Werb, Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014;15(12):786–801.
Google Scholar | Crossref | Medline9. Kai, F, Drain, AP, Weaver, VM. The extracellular matrix modulates the metastatic journey. Dev Cell. 2019;49(3):332–46.
Google Scholar | Crossref10. Cho, A, Howell, VM, Colvin, EK. The extracellular matrix in epithelial ovarian cancer—a piece of a puzzle. Front Oncol. 2015;5:245.
Google Scholar | Crossref11. Ricciardelli, C, Rodgers, RJ. Extracellular matrix of ovarian tumors. Semin Reprod Med. 2006;24(4):270–82.
Google Scholar | Crossref12. Fleszar, AJ, Walker, A, Porubsky, VL, Flanigan, W, James, D, Campagnola, PJ, Weisman, PS, Kreeger, PK. The extracellular matrix of ovarian cortical inclusion cysts modulates invasion of fallopian tube epithelial cells. APL Bioeng. 2018;2:031902.
Google Scholar | Crossref13. Rentchler, EC, Gant, KL, Drapkin, R, Patankar, M, Campagnola, PJ. Imaging collagen alterations in STICs and high grade ovarian cancers in the fallopian tubes by second harmonic generation microscopy. Cancers (Basel). 2019;11(11):1805.
Google Scholar | Crossref14. van der Steen, S, Bulten, J, Van de Vijver, KK, van Kuppevelt, TH, Massuger, L. Changes in the extracellular matrix are associated with the development of serous tubal intraepithelial carcinoma into high-grade serous carcinoma. Int J Gynecol Cancer. 2017;27(6):1072–81.
Google Scholar | Crossref15. Pudelko, A, Wisowski, G, Olczyk, K, Kozma, EM. The dual role of the glycosaminoglycan chondroitin-6-sulfate in the development, progression and metastasis of cancer. FEBS J. 2019;286(10):1815–37.
Google Scholar | Crossref16. Godoy-Guzman, C, Nunez, C, Orihuela, P, Campos, A, Carriel, V. Distribution of extracellular matrix molecules in human uterine tubes during the menstrual cycle: a histological and immunohistochemical analysis. J Anat. 2018;233(1):73–85.
Google Scholar | Crossref17. Przybycin, CG, Kurman, RJ, Ronnett, BM, Shih Ie, M, Vang, R. Are all pelvic (nonuterine) serous carcinomas of tubal origin? Am J Surg Pathol. 2010;34(10):1407–16.
Google Scholar | Crossref18. Eckert, MA, Coscia, F, Chryplewicz, A, Chang, JW, Hernandez, KM, Pan, S, Tienda, SM, Nahotko, DA, Li, G, Blazenovic, I, Lastra, RR, Curtis, M, Yamada, SD, Perets, R, McGregor, SM, Andrade, J, Fiehn, O, Moellering, RE, Mann, M, Lengyel, E. Proteomics reveals NNMT as a master metabolic regulator of cancer-associated fibroblasts. Nature. 2019;569(7758):723–8.
Google Scholar | Crossref | Medline19. Wang, C, Liu, Y, Chang, C, Wu, S, Gao, J, Zhang, Y, Chen, Y, Zhong, F, Deng, G. Human fallopian tube proteome shows high coverage of mesenchymal stem cells associated proteins. Biosci Rep. 2016;36(1):e00297.
Google Scholar | Crossref20. Hu, Y, Pan, J, Shah, P, Ao, M, Thomas, SN, Liu, Y, Chen, L, Schnaubelt, M, Clark, DJ, Rodriguez, H, Boja, ES, Hiltke, T, Kinsinger, CR, Rodland, KD, Li, QK, Qian, J, Zhang, Z, Chan, DW, Zhang, H. Integrated proteomic and glycoproteomic characterization of human high-grade serous ovarian carcinoma. Cell Rep. 2020;33(3):108276.
Google Scholar | Crossref21. McDermott, JE, Arshad, OA, Petyuk, VA, Fu, Y, Gritsenko, MA, Clauss, TR, Moore, RJ, Schepmoes, AA, Zhao, R, Monroe, ME, Schnaubelt, M, Tsai, CF, Payne, SH, Huang, C, Wang, LB, Foltz, S, Wyczalkowski, M, Wu, Y, Song, E, Brewer, MA, Thiagarajan, M, Kinsinger, CR, Robles, AI, Boja, ES, Rodriguez, H, Chan, DW, Zhang, B, Zhang, Z, Ding, L, Smith, RD, Liu, T, Rodland, KD. Proteogenomic characterization of ovarian HGSC implicates mitotic kinases, replication stress in observed chromosomal instability. Cell Rep Med. 2020;1(1):100004.
Google Scholar | Crossref22. Naba, A, Clauser, KR, Hoersch, S, Liu, H, Carr, SA, Hynes, RO. The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol Cell Proteomics. 2012;11(4):M111.014647.
Google Scholar | Crossref23. Naba, A, Clauser, KR, Ding, H, Whittaker, CA, Carr, SA, Hynes, RO. The extracellular matrix: tools and insights for the “omics” era. Matrix Biol. 2016;49:10–24.
Google Scholar | Crossref | Medline24. Naba, A, Clauser, KR, Hynes, RO. Enrichment of extracellular matrix proteins from tissues and digestion into peptides for mass spectrometry analysis. J Vis Exp. 2015;101:e53057.
Google Scholar25. Naba, A, Pearce, OMT, Del Rosario, A, Ma, D, Ding, H, Rajeeve, V, Cutillas, PR, Balkwill, FR, Hynes, RO. Characterization of the extracellular matrix of normal and diseased tissues using proteomics. J Proteome Res. 2017;16(8):3083–91.
Google Scholar | Crossref26. Nesvizhskii, AI, Keller, A, Kolker, E, Aebersold, R. A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem. 2003;75(17):4646–58.
Google Scholar | Crossref27. Deutsch, EW, Bandeira, N, Sharma, V, Perez-Riverol, Y, Carver, JJ, Kundu, DJ, Garcia-Seisdedos, D, Jarnuczak, AF, Hewapathirana, S, Pullman, BS, Wertz, J, Sun, Z, Kawano, S, Okuda, S, Watanabe, Y, Hermjakob, H, MacLean, B, MacCoss, MJ, Zhu, Y, Ishihama, Y, Vizcaíno, JA. The ProteomeXchange consortium in 2020: enabling “big data” approaches in proteomics. Nucleic Acids Res. 2020;48(D1):D1145–52.
Google Scholar28. Perez-Riverol, Y, Csordas, A, Bai, J, Bernal-Llinares, M, Hewapathirana, S, Kundu, DJ, Inuganti, A, Griss, J, Mayer, G, Eisenacher, M, Pérez, E, Uszkoreit, J, Pfeuffer, J, Sachsenberg, T, Yılmaz, Ş, Tiwary, S, Cox, J, Audain, E, Walzer, M, Jarnuczak, AF, Ternent, T, Brazma, A, Vizcaíno, JA. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47(D1):D442–50.
Google Scholar | Crossref29. Carroll, MJ, Fogg, KC, Patel, HA, Krause, HB, Mancha, AS, Patankar, MS, Weisman, PS, Barroilhet, L, Kreeger, PK. Alternatively activated macrophages upregulate mesothelial expression of P-selectin to enhance adhesion of ovarian cancer cells. Cancer Res. 2018;78:3560–73.
Google Scholar30. Taha, IN, Naba, A. Exploring the extracellular matrix in health and disease using proteomics. Essays Biochem. 2019;63(3):417–32.
Google Scholar31. Micek, HM, Visetsouk, MR, Masters, KS, Kreeger, PK. Engineering the extracellular matrix to model the evolving tumor microenvironment. iScience. 2020;23(11):101742.
Google Scholar | Crossref32. Laurich, C, Wheeler, MA, Iida, J, Neudauer, CL, McCarthy, JB, Bullard, KM. Hyaluronan mediates adhesion of metastatic colon carcinoma cells. J Surg Res. 2004;122(1):70–4.
Google Scholar | Crossref33. Kosaki, R, Watanabe, K, Yamaguchi, Y. Overproduction of hyaluronan by expression of the hyaluronan synthase Has2 enhances anchorage-independent growth and tumorigenicity. Cancer Res. 1999;59(5):1141–5.
Google Scholar34. Vellinga, TT, den Uil, S, Rinkes, IH, Marvin, D, Ponsioen, B, Alvarez-Varela, A, Fatrai, S, Scheele, C, Zwijnenburg, DA, Snippert, H, Vermeulen, L, Medema, JP, Stockmann, HB, Koster, J, Fijneman, RJ, de Rooij, J, Kranenburg, O. Collagen-rich stroma in aggressive colon tumors induces mesenchymal gene expression and tumor cell invasion. Oncogene. 2016;35(40):5263–71.
Google Scholar | Crossref35. Varghese, SS, Sarojini, SB, George, GB, Vinod, S, Mathew, P, Babu, A, Sebastian, J. Evaluation and comparison of the biopathology of collagen and inflammation in the extracellular matrix of oral epithelial dysplasias and inflammatory fibrous hyperplasia using picrosirius red stain and polarising microscopy: a preliminary study. J Cancer Prev. 2015;20(4):275–80.
Google Scholar | Crossref36. Nissen, NI, Karsdal, M, Willumsen, N. Collagens and cancer associated fibroblasts in the reactive stroma and its relation to cancer biology. J Exp Clin Cancer Res. 2019;38(1):115.
Google Scholar | Crossref37. Hanahan, D, Weinberg, RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.
Google Scholar | Crossref38. Uhlen, M, Fagerberg, L, Hallstrom, BM, Lindskog, C, Oksvold, P, Mardinoglu, A, Sivertsson, A, Kampf, C, Sjostedt, E, Asplund, A, Olsson, I, Edlund, K, Lundberg, E, Navani, S, Szigyarto, CA, Odeberg, J, Djureinovic, D, Takanen, JO, Hober, S, Alm, T, Edqvist, PH, Berling, H, Tegel, H, Mulder, J, Rockberg, J, Nilsson, P, Schwenk, JM, Hamsten, M, von Feilitzen, K, Forsberg, M, Persson, L, Johansson, F, Zwahlen, M, von Heijne, G, Nielsen, J, Pontén, F. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419.
Google Scholar | Crossref | Medline39. Lokman, NA, Elder, AS, Ween, MP, Pyragius, CE, Hoffmann, P, Oehler, MK, Ricciardelli, C. Annexin A2 is regulated by ovarian cancer-peritoneal cell interactions and promotes metastasis. Oncotarget. 2013;4(8):1199–211.
Google Scholar | Crossref40. Lokman, NA, Ricciardelli, C, Stephens, AN, Jobling, TW, Hoffmann, P, Oehler, MK. Diagnostic value of plasma annexin A2 in early-stage high-grade serous ovarian cancer. Diagnostics (Basel). 2021;11(1):69.
Google Scholar | Crossref41. Peng, Y, Kajiyama, H, Yuan, H, Nakamura, K, Yoshihara, M, Yokoi, A, Fujikake, K, Yasui, H, Yoshikawa, N, Suzuki, S, Senga, T, Shibata, K, Kikkawa, F. PAI-1 secreted from metastatic ovarian cancer cells triggers the tumor-promoting role of the mesothelium in a feedback loop to accelerate peritoneal dissemination. Cancer Lett. 2019;442:181–92.
Google Scholar | Crossref42. Bekos, C, Muqaku, B, Dekan, S, Horvat, R, Polterauer, S, Gerner, C, Aust, S, Pils, D. NECTIN4 (PVRL4) as putative therapeutic target for a specific subtype of high grade serous ovarian cancer-an integrative multi-omics approach. Cancers (Basel). 2019;11(5):698.
Google Scholar | Crossref43. Kobayashi, H, Sugimoto, H, Onishi, S, Nakano, K. Novel biomarker candidates for the diagnosis of ovarian clear cell carcinoma. Oncol Lett. 2015;10(2):612–18.
Google Scholar | Crossref44. Ganapathi, MK, Jones, WD, Sehouli, J, Michener, CM, Braicu, IE, Norris, EJ, Biscotti, CV, Vaziri, SA, Ganapathi, RN. Expression profile of COL2A1 and the pseudogene SLC6A10P predicts tumor recurrence in high-grade serous ovarian cancer. Int J Cancer. 2016;138(3):679–88.
Google Scholar | Crossref45. Pan, X, Ma, X. A novel six-gene signature for prognosis prediction in ovarian cancer. Front Genet. 2020;11:1006.
Google Scholar | Crossref46. Li, M, Cheng, X, Rong, R, Gao, Y, Tang, X, Chen, Y. High expression of fibroblast activation protein (FAP) predicts poor outcome in high-grade serous ovarian cancer. BMC Cancer. 2020;20(1):1032.
Google Scholar | Crossref47. Manders, DB, Kishore, HA, Gazdar, AF, Keller, PW, Tsunezumi, J, Yanagisawa, H, Lea, J, Word, RA. Dysregulation of fibulin-5 and matrix metalloproteases in epithelial ovarian cancer. Oncotarget. 2018;9(18):14251–67.
Google Scholar | Crossref48. Fogg, KC, Renner, CM, Christian, H, Walker, A, Marty-Santos, L, Khan, A, Olson, WR, Parent, C, O’Shea, A, Wellik, DM, Weisman, PS, Kreeger, PK. Ovarian cells have increased proliferation in response to heparin-binding epidermal growth factor as collagen density increases. Tissue Eng Part A. 2020;26(13–4):747–58.
Google Scholar49. Sahai, E, Astsaturov, I, Cukierman, E, DeNardo, DG, Egeblad, M, Evans, RM, Fearon, D, Greten, FR, Hingorani, SR, Hunter, T, Hynes, RO, Jain, RK, Janowitz, T, Jorgensen, C, Kimmelman, AC, Kolonin, MG, Maki, RG, Powers, RS, Puré, E, Ramirez, DC, Scherz-Shouval, R, Sherman, MH, Stewart, S, Tlsty, TD, Tuveson, DA, Watt, FM, Weaver, V, Weeraratna, AT, Werb, Z. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 2020;20(3):174–86.
Google Scholar | Crossref50. Pearce, OMT, Delaine-Smith, RM, Maniati, E, Nichols, S, Wang, J, Bohm, S, Rajeeve, V, Ullah, D, Chakravarty, P, Jones, RR, Montfort, A, Dowe, T, Gribben, J, Jones, JL, Kocher, HM, Serody, JS, Vincent, BG, Connelly, J, Brenton, JD, Chelala, C, Cutillas, PR, Lockley, M, Bessant, C, Knight, MM, Balkwill, FR. Deconstruction of a metastatic tumor microenvironment reveals a common matrix response in human cancers. Cancer Discov. 2018;8(3):304–19.
Google Scholar | Crossref51. Doberstein, K, Spivak, R, Feng, Y, Stuckelberger, S, Mills, GB, Devins, KM, Schwartz, LE, Iwanicki, MP, Fogel, M, Altevogt, P, Drapkin, R. Fallopian tube precursor lesions of serous ovarian carcinoma require L1CAM for dissemination and metastasis. bioRxiv. 2018. doi:10.1101/270785.

留言 (0)

沒有登入
gif