Prognostic Value of the Immunohistochemical Expression of RAD51 and BRCA2 in Gastric Adenocarcinoma

1. Fukayama, M, Rugge, M, Washington, MK. Tumours of the stomach . In: World Health Organization, editor. WHO classification of tumours: digestive system tumours. Volume 1. 5th ed. Lyon: IARC; 2019, p. 59–109.
Google Scholar2. Gachechiladze, M, Skarda, J, Soltermann, A, Joerger, M. RAD51 as a potential surrogate marker for DNA repair capacity in solid malignancies. Int J Cancer. 2017;141:1286–94. doi:10.1002/ijc.30764.
Google Scholar | Crossref3. Graeser, M, McCarthy, A, Lord, CJ, Savage, K, Hills, M, Salter, J, Orr, N, Parton, M, Smith, IE, Reis-Filho, JS, Dowsett, M, Ashworth, A, Turner, NC. A marker of homologous recombination predicts pathologic complete response to neoadjuvant chemotherapy in primary breast cancer. Clin Cancer Res. 2010;16:6159–68. doi:10.1158/1078-0432.CCR-10-1027.
Google Scholar | Crossref4. Abdel-Fatah, TM, Arora, A, Moseley, P, Coveney, C, Perry, C, Johnson, K, Kent, C, Ball, G, Chan, S, Madhusudan, S. ATM, ATR and DNA-PKcs expressions correlate to adverse clinical outcomes in epithelial ovarian cancers. BBA Clin. 2014;2:10–7. doi:10.1016/j.bbacli.2014.08.001.
Google Scholar | Crossref5. Li, Y, He, L, Wang, Y, Li, Y, Yang, S, Chen, J, Wang, L, Lou, Y. Expression of ATM, CHK2 and BRCA1 predicts the clinical outcome of non-small cell lung cancer in patients receiving platinum-based chemotherapy. Int J Clin Exp Pathol. 2017;10:7035–43.
Google Scholar6. Foray, N, Marot, D, Gabriel, A, Randrianarison, V, Carr, AM, Perricaudet, M, Ashworth, A, Jeggo, P. A subset of ATM- and ATR-dependent phosphorylation events requires the BRCA1 protein. EMBO J. 2003;22:2860–71. doi:10.1093/emboj/cdg274.
Google Scholar | Crossref7. Forget, AL, Kowalczykowski, SC. Single-molecule imaging brings Rad51 nucleoprotein filaments into focus. Trends Cell Biol. 2010;20:269–76. doi:10.1016/j.tcb.2010.02.004.
Google Scholar | Crossref8. Cheng, Q, Chen, J. Mechanism of p53 stabilization by ATM after DNA damage. Cell Cycle. 2010;9:472–8. doi:10.4161/cc.9.3.10556.
Google Scholar | Crossref9. Lee, HE, Han, N, Kim, MA, Lee, HS, Yang, HK, Lee, BL, Kim, WH. DNA damage response-related proteins in gastric cancer: ATM, CHK2 and p53 expression and their prognostic value. Pathobiology. 2014;81:25–35. doi:10.1159/000351072.
Google Scholar | Crossref10. Fenoglio-Preiser, CM, Wang, J, Stemmermann, GN, Noffsinger, A. TP53 and gastric carcinoma: a review. Hum Mutat. 2003;21:258–70. doi:10.1002/humu.10180.
Google Scholar | Crossref11. Mitra, A, Jameson, C, Barbachano, Y, Sanchez, L, Kote-Jarai, Z, Peock, S, Sodha, N, Bancroft, E, Fletcher, A, Cooper, C, Easton, D; IMPACT Steering Committee IMPACT EMBRACE Collaborators Eeles, R, Foster, CS. Overexpression of RAD51 occurs in aggressive prostatic cancer. Histopathology. 2009;55(6):696–704. doi:10.1111/j.1365-2559.2009.03448.x.
Google Scholar | Crossref12. Zhang, Y, Wu, H, Yang, F, Ning, J, Li, M, Zhao, C, Zhong, S, Gu, K, Wang, H. Prognostic value of the expression of DNA repair-related biomarkers mediated by alcohol in gastric cancer patients. Am J Pathol. 2018;188(2):367–377. doi:10.1016/j.ajpath.2017.10.010.
Google Scholar | Crossref13. Altan, B, Yokobori, T, Ide, M, Bai, T, Yanoma, T, Kimura, A, Kogure, N, Suzuki, M, Bao, P, Mochiki, E, Ogata, K, Handa, T, Kaira, K, Nishiyama, M, Asao, T, Oyama, T, Kuwano, H. High expression of MRE11-RAD50-NBS1 is associated with poor prognosis and chemoresistance in gastric cancer. Anticancer Res. 2016;36:5237–47. doi:10.21873/anticanres.11094.
Google Scholar | Crossref14. Sentani, K, Oue, N, Sakamoto, N, Nishisaka, T, Fukuhara, T, Matsuura, H, Yasui, W. Positive immunohistochemical staining of gammaH2AX is associated with tumor progression in gastric cancers from radiation-exposed patients. Oncol Rep. 2008;20:1131–6.
Google Scholar15. Schuler, M, Bossy-Wetzel, E, Goldstein, JC, Fitzgerald, P, Green, DR. p53 induces apoptosis by caspase activation through mitochondrial cytochrome c release. J Biol Chem. 2000;275:7337–42. doi:10.1074/jbc.275.10.7337.
Google Scholar | Crossref16. Hu, JL, Hu, SS, Hou, XX, Zhu, X, Cao, J, Jiang, LH, Ge, MH. Abnormal expression of DNA double-strand breaks related genes, ATM and GammaH2AX, in thyroid carcinoma. Int J Endocrinol. 2015;2015:136810. doi:10.1155/2015/136810.
Google Scholar | Crossref | Medline17. Stiff, T, O’Driscoll, M, Rief, N, Iwabuchi, K, Lobrich, M, Jeggo, PA. ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res. 2004;64:2390–6. doi:10.1158/0008-5472.can-03-3207.
Google Scholar | Crossref18. Shigeishi, H, Yokozaki, H, Oue, N, Kuniyasu, H, Kondo, T, Ishikawa, T, Yasui, W. Increased expression of CHK2 in human gastric carcinomas harboring p53 mutations. Int J Cancer. 2002;99:58–62. doi:10.1002/ijc.10272.
Google Scholar | Crossref19. Jiang, J, Yang, ES, Jiang, G, Nowsheen, S, Wang, H, Wang, T, Wang, Y, Billheimer, D, Chakravarthy, AB, Brown, M, Haffty, B, Xia Fp53-dependent. BRCA1 nuclear export controls cellular susceptibility to DNA damage. Cancer Res. 2011;71:5546–57. doi:10.1158/0008-5472.CAN-10-3423.
Google Scholar | Crossref20. Zhang, ZZ, Liu, YJ, Yin, XL, Zhan, P, Gu, Y, Ni, XZ. Loss of BRCA1 expression leads to worse survival in patients with gastric carcinoma. World J Gastroenterol. 2013;19:1968–74. doi10.3748/wjg.v19.i12.1968.
Google Scholar21. Abdel-Fatah, TM, Middleton, FK, Arora, A, Agarwal, D, Chen, T, Moseley, PM, Perry, C, Doherty, R, Chan, S, Green, AR, Rakha, E, Ball, G, Ellis, IO, Curtin, NJ, Madhusudan, S. Untangling the ATR-CHEK1 network for prognostication, prediction and therapeutic target validation in breast cancer. Mol Oncol. 2015;9:569–85. doi:10.1016/j.molonc.2014.10.013.
Google Scholar | Crossref22. Abdel-Fatah, T, Arora, A, Gorguc, I, Abbotts, R, Beebeejaun, S, Storr, S, Mohan, V, Hawkes, C, Soomro, I, Lobo, DN, Parsons, SL, Madhusudan, S. Are DNA repair factors promising biomarkers for personalized therapy in gastric cancer? Antioxid Redox Signal. 2013;18:2392–8. doi:10.1089/ars.2012.4873.
Google Scholar | Crossref23. Kim, JW, Im, SA, Kim, MA, Cho, HJ, Lee, DW, Lee, KH, Kim, TY, Han, SW, Oh, DY, Lee, HJ, Kim, TY, Yang, HK, Kim, WH, Bang, YJ. Ataxia-telangiectasia-mutated protein expression with microsatellite instability in gastric cancer as prognostic marker. Int J Cancer. 2014;134:72–80. doi:10.1002/ijc.28245.
Google Scholar | Crossref24. Welsh, JW, Ellsworth, RK, Kumar, R, Fjerstad, K, Martinez, J, Nagel, RB, Eschbacher, J, Stea, B. Rad51 protein expression and survival in patients with glioblastoma multiforme. Int J Radiat Oncol Biol Phys. 2009;74:1251–5. doi:10.1016/j.ijrobp.2009.03.018.
Google Scholar | Crossref25. Alshareeda, AT, Negm, OH, Aleskandarany, MA, Green, AR, Nolan, C, TigHhe, PJ, Madhusudan, S, Ellis, IO, Rakha, EA. Clinical and biological significance of RAD51 expression in breast cancer: a key DNA damage response protein. Breast Cancer Res Treat. 2016;159:41–53. doi:10.1007/s10549-016-3915-8.
Google Scholar | Crossref26. Soderlund, K, Skoog, L, Fornander, T, Askmalm, MS. The BRCA1/BRCA2/Rad51 complex is a prognostic and predictive factor in early breast cancer. Radiother Oncol. 2007;84:242–51. doi:10.1016/j.radonc.2007.06.012.
Google Scholar | Crossref27. Gachechiladze, M, Škarda, J, Kolek, V, Grygárková, I, Langová, K, Bouchal, J, Kolář, Z, Baty, F, Stahel, R, Weder, W, Soltermann, A, Joerger, M. Prognostic and predictive value of loss of nuclear RAD51 immunoreactivity in resected non-small cell lung cancer patients. Lung Cancer. 2017;105:31–8. doi:10.1016/j.lungcan.2017.01.009.
Google Scholar | Crossref28. Tennstedt, P, Fresow, R, Simon, R, Marx, A, Terracciano, L, Petersen, C, Sauter, G, Dikomey, E, Borgmann, K. RAD51 overexpression is a negative prognostic marker for colorectal adenocarcinoma. Int J Cancer. 2013;132:2118–26. doi:10.1002/ijc.27907.
Google Scholar | Crossref29. Li, Y, Wang, WY, Xiao, JH, Xu, F, Liao, DY, Xie, L, Wang, J, Luo, F. Overexpression of Rad51 predicts poor prognosis in colorectal cancer: our experience with 54 patients. PLoS ONE. 2017;12:e0167868. doi:10.1371/journal.pone.0167868.
Google Scholar | Crossref30. Maacke, H, Opitz, S, Jost, K, Hamdorf, W, Henning, W, Krüger, S, Feller, AC, Lopens, A, Diedrich, K, Schwinger, E, Stürzbecher, HW. Over-expression of wild-type Rad51 correlates with histological grading of invasive ductal breast cancer. Int J Cancer. 2000;88:907–13. doi:10.1002/1097-0215(20001215)88: 6<907::aid-ijc11>3.0.co; 2-4.
Google Scholar | Crossref31. Wiegmans, AP, Al-Ejeh, F, Chee, N, Yap, PY, Gorski, JJ, Da Silva, L, Bolderson, E, Chenevix-Trench, G, Anderson, R, Simpson, PT, Lakhani, SR, Khanna, KK. Rad51 supports triple negative breast cancer metastasis. Oncotarget. 2014;5(10):3261–72. doi:10.18632/oncotarget.1923.
Google Scholar | Crossref32. Nakanoko, T, Saeki, H, Morita, M, Nakashima, Y, Ando, K, Oki, E, Ohga, T, Kakeji, Y, Toh, Y, Maehara, Y. Rad51 expression is a useful predictive factor for the efficacy of neoadjuvant chemoradiotherapy in squamous cell carcinoma of the esophagus. Ann Surg Oncol. 2014;21:597–604. doi:10.1245/s10434-013-3220-2.
Google Scholar | Crossref33. Connell, PP, Jayathilaka, K, Haraf, DJ, Weichselbaum, RR, Vokes, EE, Lingen, MW. Pilot study examining tumor expression of RAD51 and clinical outcomes in human head cancers. Int J Oncol. 2006;28:1113–9.
Google Scholar34. Qiao, GB, Wu, YL, Yang, XN, Zhong, WZ, Xie, D, Guan, XY, Fischer, D, Kolberg, HC, Kruger, S, Stuerzbecher, HW. High-level expression of Rad51 is an independent prognostic marker of survival in non-small-cell lung cancer patients. Br J Cancer. 2005;93:137–43. doi:10.1038/sj.bjc.6602665.
Google Scholar | Crossref35. Tan, L, Yuan, J, Zhu, W, Tao, K, Wang, G, Gao, J. Interferon regulatory factor-1 suppresses DNA damage response and reverses chemotherapy resistance by downregulating the expression of RAD51 in gastric cancer. Am J Cancer Res. 2020;10:1255–70.
Google Scholar

留言 (0)

沒有登入
gif