1. Liu, Y, Zheng, YF, Chen, XH, et al. Fundamental theory of biodegradable metals-definition, criteria, and design. Adv Funct Mater 2019; 29(8): 1805402.
Google Scholar |
Crossref2. Zhao, MMC, Zhao, YC, Yin, DF, et al. Biodegradation behavior of coated as-extruded Mg–Sr alloy in simulated body fluid. Acta Metall Sin (Engl Lett.) 2019; 32: 1195–1206.
Google Scholar |
Crossref3. Adekanmbi, I, Mosher, CZ, Lu, HH, et al. Mechanical behaviour of biodegradable AZ31 magnesium alloy after long term in vitro degradation. Mater Sci Eng C Mater Biol Appl 2017; 77: 1135–1144.
Google Scholar |
Crossref |
Medline4. Shanab, SMM, Ameer, MA, Fekry, AM, et al. Corrosion resistance of magnesium alloy (AZ31E) as orthopaedic biomaterials in sodium chloride containing antioxidantly active compounds from eichhornia crassipes. Int J Electrochem SC 2011; 6(7): 3017–3035.
Google Scholar5. Gan, JJ, Tan, LL, Yang, K, et al. Bioactive Ca-P coating with self-sealing structure on pure magnesium. J Mater Sci Mater Med 2013; 24(4): 889–901.
Google Scholar |
Crossref |
Medline6. Yang, YW, He, CX, DY, E, et al. Mg bone implant: features, developments and perspectives. Mater Design 2020; 185: 108259.
Google Scholar |
Crossref7. Wu, W, Sun, X, Zhu, CL, et al. Biocorrosion resistance and biocompatibility of Mg-Al layered double hydroxide/poly-L-glutamic acid hybrid coating on magnesium alloy AZ31. Prog Org Coat 2020; 147: 105746.
Google Scholar |
Crossref8. Bommala, VK, Krishna, MG, Rao, CI. Magnesium matrix composites for biomedical applications: a review. J Magnes Alloy 2019; 7(1): 72–79.
Google Scholar |
Crossref9. Dutta, S, Gupta, S, Roy, M. Recent developments in magnesium metal-Matrix composites for biomedical applications: a review. Acs Biomater Sci Eng 2020; 6(9): 4748–4773.
Google Scholar |
Crossref |
Medline10. Lin, ZJ, Zhao, Y, Zhang, ZX, et al. Antibacterial properties, hemolysis and biocompatibility of biodegradable medical magnesium alloys. Rare Metal Mat Eng 2018; 47(1): 403–408.
Google Scholar11. Ding, YF, Wen, CE, Hodgson, P, et al. Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: a review. J Mater Chem B 2014; 2(14): 1912–1933.
Google Scholar |
Crossref |
Medline12. del Campo, R, Savoini, B, Munoz, A, et al. Mechanical properties and corrosion behavior of Mg-HAP composites. J Mech Behav Biomed 2014; 39: 238–246.
Google Scholar |
Crossref |
Medline13. Kiani, F, Wen, CE, Li, YC. Prospects and strategies for magnesium alloys as biodegradable implants from crystalline to bulk metallic glasses and composites-A review. Acta Biomater 2020; 103: 1–23.
Google Scholar |
Crossref |
Medline14. Yao, H, Wen, JB, Xiong, Y, et al. Microstructures, mechanical properties, and corrosion behavior of as–Ca st Mg-2.0Zn-0.5Zr-xGd (wt%) Biodegradable Alloys. Materials 2018; 11(9): 1564.
Google Scholar |
Crossref15. Zhang, DD, Peng, F, Liu, XY. Protection of magnesium alloys: from physical barrier coating to smart self-healing coating. J Alloy Compd 2021; 853: 157010.
Google Scholar |
Crossref16. Gu, XN, Li, N, Zhou, WR, et al. Corrosion resistance and surface biocompatibility of a microarc oxidation coating on a Mg–Ca alloy. Acta Biomater 2011; 7(4): 1880–1889.
Google Scholar |
Crossref |
Medline17. Rahman, M, Dutta, NK, Choudhury, NR. Magnesium alloys with tunable interfaces as bone implant materials. Front Bioeng Biotech 2020; 8: 564.
Google Scholar |
Crossref |
Medline18. Demirci, EE, Arslan, E, Ezirmik, KV, et al. Investigation of wear, corrosion and tribocorrosion properties of AZ91 Mg alloy coated by micro arc oxidation process in the different electrolyte solutions. Thin Solid Film 2013; 528: 116–122.
Google Scholar |
Crossref19. Zeng, RC, Cui, LY, Jiang, K, et al. In vitro corrosion and cytocompatibility of a micro arc oxidation coating and poly(L-lactic acid) composite coating on Mg-1Li-1Ca alloy for orthopedic implants. ACS Appl Mater Inter 2016; 8(15): 10014–10028.
Google Scholar |
Crossref |
Medline20. Xu, SJ, Qiu, ZY, Wu, JJ, et al. Osteogenic differentiation gene expression profiling of h MSCs on hydroxyapatite and mineralized collagen. Tissue Eng A 2016; 22(1–2): 170–181.
Google Scholar |
Crossref |
Medline21. Qiu, ZY, Cui, Y, Tao, CS, et al. Mineralized Collagen: rationale, current status, and clinical applications. Materials (Basel) 2015; 8(8): 4733–4750.
Google Scholar |
Crossref |
Medline22. Yu, Q, Wang, CY, Yang, JX, et al. Mineralized collagen/Mg–Ca alloy combined scaffolds with improved biocompatibility for enhanced bone response following tooth extraction. Biomed Mater 2018; 13(6): 065008.
Google Scholar |
Crossref |
Medline23. Guo, CW, Yu, Q, Sun, BZ, et al. Evaluation of alveolar bone repair with mineralized collagen block reinforced with Mg–Ca alloy rods. J Biomater Tiss Eng 2018; 8(1): 1–10.
Google Scholar |
Crossref24. Nie, XJ, Sun, XR, Wang, CY, et al. Effect of magnesium ions/type I collagen promote the biological behavior of osteoblasts and its mechanism. Regen Biomater 2020; 7(1): 53–61.
Google Scholar |
Medline25. Tao, FH, Ma, SJ, Tao, H, et al. Chitosan-based drug delivery systems: from synthesis strategy to osteomyelitis treatment - A review. Carbohyd Polym 2021; 251: 117063.
Google Scholar |
Crossref |
Medline26. Qi, HF, Heise, S, Zhou, JC, et al. Electrophoretic deposition of bioadaptive drug delivery coatings on magnesium alloy for bone repair. Acs Appl Mater Inter 2019; 11(8): 8625–8634.
Google Scholar |
Crossref |
Medline27. Gao, F, Hu, YD, Li, GC, et al. Layer-by-layer deposition of bioactive layers on magnesium alloy stent materials to improve corrosion resistance and biocompatibility. Bioact Mater 2020; 5(3): 611–623.
Google Scholar |
Crossref |
Medline28. Fekry, AM, Ghoneim, AA, Ameer, MA. Electrochemical impedance spectroscopy of chitosan coated magnesium alloys in a synthetic sweat medium. Surf Coat Tech 2014; 238: 126–132.
Google Scholar |
Crossref29. Dou, JH, Yu, HJ, Chen, CZ, et al. Preparation and microstructure of MAO/CS composite coatings on Mg alloy. Mater Lett 2020; 271: 127729.
Google Scholar |
Crossref30. Han, HS, Jun, I, Seok, HK, et al. Biodegradable magnesium alloys promote angio-osteogenesis to enhance bone repair. Adv Sci 2020; 7(15): 2000800.
Google Scholar |
Crossref31. Li, JL, Qin, L, Yang, K, et al. Materials evolution of bone plates for internal fixation of bone fractures: a review. J Mater Sci Technol 2020; 36: 190–208.
Google Scholar |
Crossref32. Ghoneim, AA, El-Kamel, RS, Fekry, AM. Hydrogen evolution and quantum calculations for potassium sorbate as an efficient green inhibitor for biodegradable magnesium alloy staples used for sleeve gastrectomy surgery. Int J Hydrogen Energ 2020; 45(46): 24370–24382.
Google Scholar |
Crossref33. Ho, YH, Man, K, Joshi, SS, et al. In-vitro biomineralization and biocompatibility of friction stir additively manufactured AZ31B magnesium alloy-hydroxyapatite composites. Bioact Mater 2020; 5(4): 891–901.
Google Scholar |
Crossref |
Medline34. Cai, H, Li, X, Chu, CL, et al. Insight into the effect of interface on the mechanical properties of Mg/PLA composite plates. Compos Sci Technol 2019; 183: 107801.
Google Scholar |
Crossref35. Geng, HW, Mou, ZG, Liu, ZY, et al. Biochemical degradation of chitosan over immobilized cellulase and supported fenton catalysts. Catalysts 2020; 10(6): 604.
Google Scholar |
Crossref36. Razavi, M, Fathi, M, Savabi, O, et al. Biodegradable magnesium bone implants coated with a novel bioceramic nanocomposite. Materials 2020; 13(6): 1315.
Google Scholar |
Crossref37. Fekry, AM, Tammam, RH. Electrochemical behavior of magnesium alloys as biodegradable materials in phosphate buffer saline solution. Int J Electrochem SC 2012; 7(12): 12254–12261.
Google Scholar38. Heakal, FE, Shehata, OS, Tantawy, NS, et al. Investigation on the corrosion and hydrogen evolution for AZ91D magnesium alloy in single and anion-containing oxalate solutions. Int J Hydrogen Energ 2012; 37(1): 84–94.
Google Scholar |
Crossref39. Guo, Y, Yu, YJ, Han, LP, et al. Biocompatibility and osteogenic activity of guided bone regeneration membrane based on chitosan-coated magnesium alloy. Mat Sci Eng C-Mater 2019; 100: 226–235.
Google Scholar |
Crossref |
Medline40. Jaiswal, S, Dubey, A, Lahiri, D. The influence of bioactive hydroxyapatite shape and size on the mechanical and biodegradation behaviour of magnesium based composite. Ceram Int 2020; 46(17): 27205–27218.
Google Scholar |
Crossref41. Zhou, ZW, Zheng, B, Gu, YP, et al. New approach for improving anticorrosion and biocompatibility of magnesium alloys via polydopamine intermediate layer-induced hydroxyapatite coating. Surf Inter 2020; 19: 100501.
Google Scholar42. Du, ZY, Leng, HJ, Guo, LY, et al. Calcium silicate scaffolds promoting bone regeneration via the doping of Mg2+ or Mn2+ ion. Compos Part B-eng 2020; 190: 107937.
Google Scholar |
Crossref43. Pan, S, An, LW, Meng, X, et al. MgCl2 and ZnCl2 promote human umbilical vein endothelial cell migration and invasion and stimulate epithelial-mesenchymal transition via the Wnt/beta–Ca tenin pathway. Exp Ther Med 2020; 14(5): 4663–4670.
Google Scholar44. Gao, F, Hu, YD, Gong, ZH, et al. Fabrication of chitosan/heparinized graphene oxide multilayer coating to improve corrosion resistance and biocompatibility of magnesium alloys. Mat Sci Eng C-Mater 2019; 104: 109947.
Google Scholar |
Crossref |
Medline45. Curtin, CM, Tierney, EG, McSorley, K, et al. Combinatorial gene therapy accelerates bone regeneration: non-viral dual delivery of vegf and bmp2 in a collagen-nanohydroxyapatite scaffold. Adv Healthc Mater 2015; 4(2): 223–227.
Google Scholar |
Crossref |
Medline46. Li, LM, Yu, ML, Li, Y, et al. Synergistic anti-inflammatory and osteogenic n-HA/resveratrol/chitosan composite microspheres for osteoporotic bone regeneration. Bioact Mater 2020; 6(5): 1255–1266.
Google Scholar |
Crossref |
Medline47. Zink, C, Hall, H, Brunette, DM, et al. Orthogonal nanometer-micrometer roughness gradients probe morphological influences on cell behavior. Biomaterials 2012; 33(32): 8055–8061.
Google Scholar |
Crossref |
Medline48. Lei, Z, Jia, P, Wang, HD, et al. Facile preparation of poly(lactic acid)/brushite bilayer coating on biodegradable magnesium alloys with multiple functionalities for orthopedic application. Acs Appl Mater Inter 2017; 9(11): 9437–9448.
Google Scholar |
Crossref |
Medline49. Jiao, CC, Gu, JJ, Cao, Y, et al. Preparation of Al2O3-ZrO2 scaffolds with controllable multi-level pores via digital light processing. J Eur Ceram Soc 2020; 40(15): 6087–6094.
Google Scholar |
Crossref50. Putri, TS, Hayashi, K, Ishikawa, K. Fabrication of three-dimensional interconnected porous blocks composed of robust carbonate apatite frameworks. Ceram Int 2020; 46(12): 20045–20049.
Google Scholar |
Crossref51. Li, HF, He, W, Pang, SJ, et al. In vitro responses of bone-forming MC3T3-E1 pre-osteoblasts to biodegradable Mg-based bulk metallic glasses. Mat Sci Eng C-Mater 2016; 68: 632–641.
Google Scholar |
Crossref |
Medline52. Shen, YX, Sun, XR, Wang, CY, et al. Study on Degradation behavior and biocompatibility of polymethyl methacrylate/mineralized collagen/Mg–Ca alloy composite Material. J Biomater Tiss Eng 2020; 10(2): 139–150.
Google Scholar |
Crossref53. Rumney, RMH, Lanham, SA, Kanczler, JM, et al. In vivo delivery of VEGF RNA and protein to increase osteogenesis and intraosseous angiogenesis. Sci Rep 2019; 9: 17745.
Google Scholar |
Crossref |
Medline54. Wang, B, Huang, Y, Huang, ZW, et al. Self-assembling in situ gel based on lyotropic liquid crystals containing VEGF for tissue regeneration. Acta Biomater 2019; 99: 84–99.
Google Scholar |
留言 (0)