Biomedical applications of tannic acid

1. Dar, RA, Shahnawaz, M, Qazi, PH. General overview of medicinal plants: a review. J Phytopharmacol 2017; 6(6): 349–351.
Google Scholar | Crossref2. Shakya, AK . Medicinal plants: future source of new drugs. Int J Herbal Med 2016; 4(4): 59–64.
Google Scholar3. Butler, MS . The role of natural product chemistry in drug discovery. J Natural Products 2004; 67(12): 2141–2153.
Google Scholar | Crossref | Medline4. Nuismer, SL, Jordano, P, Bascompte, J. Coevolution and the architecture of mutualistic networks. Evol Int J Org Evol 2013; 67(2): 338–354.
Google Scholar | Crossref | Medline5. Svensson, EI, Råberg, L. Resistance and tolerance in animal enemy–victim coevolution. Trends Ecol Evol 2010; 25(5): 267–274.
Google Scholar | Crossref | Medline6. Soejarto, DD, Gyllenhaal, C, Kadushin, MR, et al. An ethnobotanical survey of medicinal plants of Laos toward the discovery of bioactive compounds as potential candidates for pharmaceutical development. Pharm Biol 2012; 50(1): 42–60.
Google Scholar | Crossref | Medline7. Jamshidi-Kia, F, Lorigooini, Z, Amini-Khoei, H. Medicinal plants: past history and future perspective. J Herbmed Pharmacol 2018; 7(1): 1–7.
Google Scholar | Crossref8. Dutra, RC, Campos, MM, Santos, ARS, et al. Medicinal plants in Brazil: pharmacological studies, drug discovery, challenges and perspectives. Pharmacol Res 2016; 112: 4–29.
Google Scholar | Crossref | Medline9. Aboul-Enein, AM, El-Ela, FA, Shalaby, EA, et al. Traditional medicinal plants research in Egypt: studies of antioxidant and anticancer activities. J Med Plants Res 2012; 6(5): 689–703.
Google Scholar10. Desai, A, Qazi, G, Ganju, R, et al. Medicinal plants and cancer chemoprevention. Curr Drug Metabolism 2008; 9(7): 581–591.
Google Scholar | Crossref | Medline11. Taneja, SC, Qazi, GN. Bioactive molecues in medicinal plants: a perspective in their therapeutic action. In: Chorghade, MS . Drug discovery and development. Hoboken, NJ: John Wiley & Sons, 2007, pp. 1–50.
Google Scholar12. Greenwell, M, Rahman, PK. Medicinal plants: their use in anticancer treatment. Int J Pharm Sci Res 2015; 6(10): 4103–4112.
Google Scholar | Medline13. Mitra, I, Saha, A, Roy, K. Exploring quantitative structure–activity relationship studies of antioxidant phenolic compounds obtained from traditional Chinese medicinal plants. Mol Simulation 2010; 36(13): 1067–1079.
Google Scholar | Crossref14. Yemmen, M, Landolsi, A, Ben Hamida, J, et al. Antioxidant activities, anticancer activity and polyphenolics profile, of leaf, fruit and stem extracts of Pistacia lentiscus from Tunisia. Cell Mol Biol 2017; 63(9): 87–95.
Google Scholar | Crossref | Medline15. Cai, Y, Zhang, J, Chen, NG, et al. Recent advances in anticancer activities and drug delivery systems of tannins. Med Res Rev 2017; 37(4): 665–701.
Google Scholar | Crossref | Medline16. Kaczmarek, B . Tannic acid with antiviral and antibacterial activity as a promising component of biomaterials—A minireview. Materials 2020; 13(14): 3224.
Google Scholar | Crossref17. Yu, X, Tang, C, Xiong, S, et al. Modification of collagen for biomedical applications: a review of physical and chemical methods. Curr Org Chem 2016; 20(17): 1797–1812.
Google Scholar | Crossref18. Ninan, N, Forget, A, Shastri, VP, et al. Antibacterial and anti-inflammatory pH-responsive tannic acid-carboxylated agarose composite hydrogels for wound healing. ACS Appl Mater Interf 2016; 8(42): 28511–28521.
Google Scholar | Crossref | Medline19. Tyner, T, Francis, J. ACS reagent chemicals: specifications and procedures for reagents and standard-grade reference materials. eBook: American Chemical Society, 2016.
Google Scholar20. Tannic acid . ACS reagent chemicals. ebook: American Chemical Society, 2017; DOI: 10.1021/acsreagents.4391
Google Scholar | Crossref21. Ashok, PK, Upadhyaya, K. Tannins are astringent. J Pharmacognosy Phytochemistry 2012; 1(3): 45–50.
Google Scholar22. Gülçin, İ, Huyut, Z, Elmastaş, M, et al. Radical scavenging and antioxidant activity of tannic acid. Arabian J Chem 2010; 3(1): 43–53.
Google Scholar | Crossref23. Niemetz, R, Gross, GG. Enzymology of gallotannin and ellagitannin biosynthesis. Phytochemistry 2005; 66(17): 2001–2011.
Google Scholar | Crossref | Medline24. Mohammed, HS . Inhibitory effect of tannic acid extracted from grape seeds and pomegranate peels on some microorganisms. Mesopotamia J Agric 2008; 36(1): 12–18.
Google Scholar | Crossref25. Jo, H-J, Chung, K-H, Yoon, JA, et al. Radical scavenging activities of tannin extracted from amaranth (Amaranthus caudatus L.). J Microbiol Biotechnol 2015; 25(6): 795–802.
Google Scholar | Crossref | Medline26. Singleton, VL, Sullivan, AR, Kramer, C. An analysis of wine to indicate aging in wood or treatment with wood chips or tannic acid. Am J Enol Viticulture 1971; 22(3): 161–166.
Google Scholar27. Bravo, L . Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 1998; 56(11): 317–333.
Google Scholar | Crossref | Medline28. Serrano, J, Puupponen‐Pimiä, R, Dauer, A, et al. Tannins: current knowledge of food sources, intake, bioavailability and biological effects. Mol Nutr Food Res 2009; 53(S2): S310–S329.
Google Scholar | Crossref | Medline29. Okuda, T, Ito, H. Tannins of constant structure in medicinal and food plants—hydrolyzable tannins and polyphenols related to tannins. Molecules 2011; 16(3): 2191–2217.
Google Scholar | Crossref30. Watrelot, AA, Le Guernevé, C, Hallé, H, et al. Multimethod approach for extensive characterization of gallnut tannin extracts. J Agric Food Chem 2020; 68(47):13426–13438.
Google Scholar | Crossref | Medline31. Sariozlu, NY, Kivanc, M. Gallnuts (Quercus infectoria Oliv. and Rhus chinensis Mill.) and their usage in health. In: Nuts and seeds in health and disease prevention. London: Elsevier, 2011, pp. 505–511.
Google Scholar | Crossref32. Makkar, HPS, Becker, K. Behaviour of tannic acid from various commercial sources towards redox, metal complexing and protein precipitation assays of tannins. J Sci Food Agric 1993; 62(3): 295–299.
Google Scholar | Crossref33. Hupkens, P, Boxma, H, Dokter, J. Tannic acid as a topical agent in burns: historical considerations and implications for new developments. Burns 1995; 21(1): 57–61.
Google Scholar | Crossref | Medline34. Falcão, L, Araújo, ME. Vegetable tannins used in the manufacture of historic leathers. Molecules 2018; 23(5): 1081.
Google Scholar | Crossref35. Lu, Z, Nie, G, Belton, PS, et al. Structure–activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives. Neurochem Int 2006; 48(4): 263–274.
Google Scholar | Crossref | Medline36. Brown, EM, Shelly, DC. Molecular modeling approach to vegetable tanning: preliminary results for gallotannin interactions with the collagen microfibril. J Am Leather Chemists Assoc 2011; 106(5): 145–152.
Google Scholar37. Heijmen, FH, Du Pont, JS, Middelkoop, E, et al. Cross-linking of dermal sheep collagen with tannic acid. Biomaterials 1997; 18(10): 749–754.
Google Scholar | Crossref | Medline38. Gao, J, Yang, X, Yin, W, et al. Gallnuts: a potential treasure in anticancer drug discovery. Evidence-Based Complement Altern Med 2018; 2018: 4930371.
Google Scholar | Crossref | Medline39. Wang, H, Cui, K, Shao, S, et al. Molecular response of gall induction by aphid schlechtendalia chinensis (Bell) attack on Rhus chinensis Mill. J Plant Interact 2017; 12(1): 465–479.
Google Scholar | Crossref40. Min, LY, Longton, RE. Mosses and the production of Chinese gallnuts. J Bryol 1993; 17(3): 421–430.
Google Scholar | Crossref41. Wang, M, Huang, H, Hu, Y, et al. Effects of dietary microencapsulated tannic acid (extracted from Chinese gallnut) supplementation on the growth performance, intestinal morphology, and intestinal microbiota in weaning piglets. J Anim Sci 2020; 98(5): skaa112.
Google Scholar | Crossref | Medline42. Liu, S, Li, S, Lin, G, et al. Anthocyanin copigmentation and color attributes of bog bilberry syrup wine during bottle aging: effect of tannic acid and gallic acid extracted from Chinese gallnut. J Food Process Preservation 2019; 43(8): e14041.
Google Scholar | Crossref43. Kim, BJ, Lee, JK, Choi, IS. Iron gall ink revisited: hierarchical formation of Fe (iii)–tannic acid coacervate particles in microdroplets for protein condensation. Chem Commun 2019; 55(15): 2142–2145.
Google Scholar | Crossref | Medline44. Odukoya, OA, Sofidiya, MO, Ilori, OO, et al. Hemorrhoid therapy with medicinal plants: astringency and inhibition of lipid peroxidation as key factors. Int J Biol Chem 2009; 3(3): 111–118.
Google Scholar | Crossref45. Erdelmeier, C, Cinatl, J, Rabenau, H, et al. Antiviral and antiphlogistic activities of Hamamelis virginiana bark. Planta Medica 1996; 62(03): 241–245.
Google Scholar | Crossref | Medline46. Adams, M, Berset, C, Kessler, M, et al. Medicinal herbs for the treatment of rheumatic disorders—a survey of European herbals from the 16th and 17th century. J Ethnopharmacol 2009; 121(3): 343–359.
Google Scholar | Crossref | Medline47. Palombo, EA . Phytochemicals from traditional medicinal plants used in the treatment of diarrhoea: modes of action and effects on intestinal function. Phytotherapy Res: An Int J Devoted Pharmacol Toxicol Eval Nat Prod Derivatives 2006; 20(9): 717–724.
Google Scholar48. Kakiuchi, N, Hattori, M, Nishizawa, M, et al. Studies on dental caries prevention by traditional medicines. VIII: inhibitory effect of various tannins on glucan synthesis by glucosyltransferase from streptococcus mutans. Chem Pharmaceutical Bulletin 1986; 34(2): 720–725.
Google Scholar | Crossref | Medline49. Versari, A, Du Toit, W, Parpinello, GP. Oenological tannins: a review. Aust J Grape Wine Res 2013; 19(1): 1–10.
Google Scholar | Crossref | ISI50. Ma, W, Guo, A, Zhang, Y, et al. A review on astringency and bitterness perception of tannins in wine. Trends Food Sci Technol 2014; 40(1): 6–19.
Google Scholar | Crossref51. Soares, S, Mateus, N, De Freitas, V. Interaction of different polyphenols with bovine serum albumin (BSA) and human salivary α-amylase (HSA) by fluorescence quenching. J Agric Food Chem 2007; 55(16): 6726–6735.
Google Scholar | Crossref | Medline52. Soares, S, García-Estévez, I, Ferrer-Galego, R, et al. Study of human salivary proline-rich proteins interaction with food tannins. Food Chem 2018; 243: 175–185.
Google Scholar | Crossref | Medline53. Loo, JA, Yan, W, Ramachandran, P, et al. Comparative human salivary and plasma proteomes. J Dental Res 2010; 89(10): 1016–1023.
Google Scholar | SAGE Journals | ISI54. Smith, PA, McRae, JM, Bindon, KA. Impact of winemaking practices on the concentration and composition of tannins in red wine. Aust J Grape Wine Res 2015; 21: 601–614.
Google Scholar | Crossref55. Ferreira, SS, Alves, AJ, Filipe-Ribeiro, L, et al. Holistic and sustainable approach for recycling and valorization of polyvinylpolypyrrolidone used in wine fining. ACS Sustainable Chem Eng 2018; 6(11): 14599–14606.
Google Scholar | Crossref56. Ishtikhar, M, Ahmad, E, Siddiqui, Z, et al. Biophysical insight into the interaction mechanism of plant derived polyphenolic compound tannic acid with homologous mammalian serum albumins. Int J Biol Macromol 2018; 107: 2450–2464.
Google Scholar |

留言 (0)

沒有登入
gif