Poly (ε-caprolactone)/Poly (lactic acid) fibers produced by rotary jet spinning for skin dressing with antimicrobial activity

1. Sorg, H, Tilkorn, DJ, Hager, S, et al. Skin wound healing: an update on the current knowledge and concepts. Eur Surg Res 2017; 58: 81–94.
Google Scholar | Crossref | Medline2. Danti, S, D’alessandro, DE, Mota, CL, et al. Applications of bioresorbable polymers in skin and eardrum. In: Perale, G, Hilborn, J (eds) Bioresorbable polymers for biomedical applications. Sawston, UK: Woodhead Publishing, 2017, pp. 423–444.
Google Scholar | Crossref3. Giorno, LP, Rodrigues, LR, Santos, AR. Métodos avançados para tratamento de queimaduras: uma revisão. Rev Bras Queimaduras 2018; 17: 60–65.
Google Scholar4. Giorno, LP, Rodrigues, LR, Santos, AR. Biomedical graft technologies: an overview. Stem Cell Res Th 2019; 4: 135–141.
Google Scholar5. Otto, M . Staphylococcus colonization of the skin and antimicrobial peptides. Expert Rev Dermatol 2010; 5: 183–195.
Google Scholar | Crossref | Medline6. Obara, VY, Zacas, CP, Carrilho, CMDM, et al. Esquema posológico atualmente utilizado para Vancomicina falha em obter níveis terapêuticos em 40% dos pacientes internados em unidade de terapia intensiva. Rev Bras Ter Intensiva 2016; 28: 380–386.
Google Scholar | Crossref | Medline7. Santos, AR, Zavaglia, CC. Tissue Engineering Concepts. In: Hashmi, S (ed) Reference module in materials science and materials engineering. Amsterdam, Netherlands: Elsevier, 2016, pp. 1–5.
Google Scholar | Crossref8. Patrício, T, Domingos, M, Gloria, A, et al. Characterisation of PCL and PCL/PLA scaffolds for tissue engineering. Procedia CIRP 2013; 5: 110–114.
Google Scholar | Crossref9. Singhvi, MS, Zinjarde, SS, Gokhale, DV. Polylactic acid: synthesis and biomedical applications. J Appl Microbiol 2019; 127: 1612–1626.
Google Scholar | Crossref | Medline10. Lopes, MS, Jardini, AL, Maciel Filho, R. Poly (lactic Acid) production for tissue engineering applications. Procedia Eng 2012; 42: 1402–1413.
Google Scholar | Crossref11. Luyt, AS, Gasmi, S. Influence of blending and blend morphology on the thermal properties and crystallization behaviour of PLA and PCL in PLA/PCL blends. J Mater Sci 2016; 51: 4670–4681.
Google Scholar | Crossref | ISI12. Siddiqui, N, Asawa, S, Birru, B, et al. PCL-Based composite scaffold matrices for tissue engineering applications. Mol Biotechnol 2018; 60: 506–532.
Google Scholar | Crossref | Medline13. Rogalski, JJ, Bastiasnsen, CWM, Peijs, T. Rotary jet spinning review - a potential high yield future for polymer nanofibers. Nanocomposites 2017; 3: 97–121.
Google Scholar | Crossref14. Zande, NE . Formation of melt and solution spun polycaprolactone fibers by centrifugal spinning. J Appl Polym Sci 2014; 132: 41269.
Google Scholar15. Iguma, TS, Malmonge, SM, Santos, AR. Natural fibrous polymers for tissue engineering. Stem Cell Reg Med 2019; 3: 1–10.
Google Scholar16. Dziadek, M, Pawlik, J, Menaszek, E, et al. Effect of the preparation methods on architecture, crystallinity, hydrolytic degradation, bioactivity, and biocompatibility of PCL/bioglass composite scaffolds. J Biomed Mater Res B Appl Biomater 2015; 103: 1580–1593.
Google Scholar | Crossref | Medline17. Gandolfi, MG, Zamparini, F, Esposti, MD, et al. Polylactic acid-based porous scaffolds doped with calcium silicate and dicalcium phosphate dihydrate designed for biomedical application. Mater Sci Eng C Mater Biol Appl 2018; 82: 163–181.
Google Scholar | Crossref | Medline18. Pires, AL, Bierhalz, ACK, Moraes, AM. Biomateriais: tipos, aplicações e mercado. Quim Nova 2015; 38: 957–971.
Google Scholar19. Yao, Q, Cosme, JG, Xu, T, et al. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation. Biomaterials 2017; 115: 115–127.
Google Scholar | Crossref | Medline20. Jeong, H, Rho, J, Shin, JY, et al. Mechanical properties and cytotoxicity of PLA/PCL films. Biomed Eng Lett 2018; 8(3): 267–272.
Google Scholar | Crossref | Medline21. Oztemur, J, Yalcin‐Enis, I. Development of biodegradable webs of PLA/PCL blends prepared via electrospinning: Morphological, chemical, and thermal characterization. J Biomed Mater Res B Appl Biomater 2021; 109(11): 1844–1856.
Google Scholar | Crossref | Medline22. Przybysz-Romatowska, M, Barczewski, M, Mania, S, et al. Morphology, thermo-mechanical properties and biodegradibility of pcl/pla blends reactively compatibilized by different organic peroxides. Materials 2021; 14: 4205.
Google Scholar | Crossref | Medline23. Machado, MTO . Desenvolvimento de matrizes poliméricas composta por poli (ε-caprolactona) e poli (l- ácido lático) - PCL/PLLA – e tetraciclina por rotofiação. Master Dissertation. Santo André, Brazil: Universidade Federal do ABC, 2016.
Google Scholar24. Kirkpatrick, CJ . Biological testing of materials and medical devices–a critical view of current and proposed methodologies for biocompatibility testing: cytotoxicity in vitro. Reg Affairs 1992; 4: 13–32.
Google Scholar25. ISO 10993-5 . Biological evaluation of medical devices – part 5 – tests for cytotoxicity: in vitro methods. Geneva, Switzerland: International Organization for Standardization, 2009.
Google Scholar26. ISO 10993-12 . Biological evaluation of medical devices – part 12 – sample preparation and reference materials. Geneva, Switzerland: International Organization for Standardization, 2012.
Google Scholar27. Murakami, N, Fukuchi, S, Takeuchi, K, et al. Antagonistic regulation of cell migration by epidermal growth factor and glucocorticoid in human gastric carcinoma cells. J Cell Physiol 1998; 176: 127–137.
Google Scholar | Crossref | Medline28. Haroosh, HJ, Dong, Y, Lau, KT. Tetracycline hydrochloride (TCH)-loaded drug carrier based on PLA:PCL nanofibre mats: experimental characterisation and release kinetics modelling. J Mater Sci 2014; 49: 6270–6281.
Google Scholar | Crossref29. Vida, TA, Motta, AC, Santos, AR, et al. Fibrous PCL/PLLA scaffolds obtained by rotary jet spinning and electrospinning. Mater Res 2017; 20: 910–916.
Google Scholar | Crossref30. Rodrigues, ICP, Woigt, LF, Pereira, KD, et al. Low-cost hybrid scaffolds based on polyurethane and gelatin. J Mater Res Technol 2020; 9: 7777–7785.
Google Scholar | Crossref31. Kouya, T, Tada, S-I, Minbu, H, et al. Microporous membranes of PLLA/PCL blends for periosteal tissue scaffold. Mater Lett 2013; 95: 103–106.
Google Scholar | Crossref32. Mohamed, HB, El-Shanawany, SM, Hamad, MA, et al. Niosomes: a strategy toward prevention of clinically significant drug incompatibilities. Sci Rep 2017; 7: 6340.
Google Scholar | Crossref | Medline33. Saidykhan, L, Rukayadi, Y, Umar Kura, A, et al. Development of nanoantibiotic delivery system using cockle shell-derived aragonite nanoparticles for treatment of osteomyelitis. Int J Nanomed 2016; 11: 661–673.
Google Scholar | Crossref | Medline34. Cardoso, GBC, Machado-Silva, AB, Sabino, M, et al. Novel hybrid membrane of chitosan/poly (ε-caprolactone) for tissue engineering. Biomatter 2014; 4: e29508.
Google Scholar | Crossref | Medline35. CLSI . Performance standards for antimicrobial disk susceptibility tests. In: CLSI standart M02. 13th ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2018.
Google Scholar36. Monaco, M, Sanchini, A, Grundmann, H, et al. Vancomycin-heteroresistant phenotype in invasive methicillin-resistant Staphylococcus aureus isolates belonging to spa type 041. Eur J Clin Microbiol Infect Dis 2010; 29: 771–777.
Google Scholar | Crossref | Medline37. Dias, BP, Belizário, LCG, Campos, W, et al. Marcadores de resistência às tetraciclinas no biofilme microbiano: principais genes e distribuição na microbiota residente. In: Proceedings of the 6 Congresso da FOA. Presidente Prudente, Brazil: UNESP, 2016.
Google Scholar38. Santos, MSA . Desenvolvimento de membranas fibrosas para a libertação controlada e localizada de antibióticos. Master Dissertation. Coimbra, Portugal: Universidade de Coimbra, 2016.
Google Scholar39. Jones, RN . Microbiological features of vancomycin in the 21st century: minimum inhibitory concentration creep, bactericidal/static activity, and applied breakpoints to predict clinical outcomes or detect resistant strains. Clin Infect Dis 2006; 42(Suppl 1): S13–S24.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif