1. Burnett, MG, Zager, EL. Pathophysiology of peripheral nerve injury: a brief review. Neurosurg Focus 2004; 16(5): E1.
Google Scholar |
Crossref |
Medline2. Adetoye, A, Aaron, O, Orimolade, E, et al. Management of neuropathic pain following traumatic brachial plexus injury with neurolysis and oral gabapentin: a case report. Niger J Clin Pract 2019; 22(9): 1301–1303.
Google Scholar |
Crossref |
Medline3. Matsumoto, J, Isu, T, Kim, K, et al. Surgical treatment of middle cluneal nerve entrapment neuropathy: technical note. J Neurosurg Spine 2018; 29(2): 208–213.
Google Scholar |
Crossref |
Medline4. Pirrello, R, D’Arpa, S, Moschella, F. Static treatment of paralytic lagophthalmos with autogenous tissues. Aesthet Plast Surg 2007; 31(6): 725–731.
Google Scholar |
Crossref |
Medline5. Singh, D, Harding, AJ, Albadawi, E, et al. Additive manufactured biodegradable poly(glycerol sebacate methacrylate) nerve guidance conduits. Acta Biomater 2018; 78: 48–63.
Google Scholar |
Crossref |
Medline6. Lacorzana, J . Amniotic membrane, clinical applications and tissue engineering. Review of its ophthalmic use. Archivos de la Sociedad Española de Oftalmología (English Edition) 2020; 95(1): 15–23.
Google Scholar |
Crossref7. Meng, H, Li, M, You, F, et al. Assessment of processed human amniotic membrane as a protective barrier in rat model of sciatic nerve injury. Neurosci Lett 2011; 496(1): 48–53.
Google Scholar |
Crossref |
Medline8. Bourgeois, M, Loisel, F, Obert, L, et al. Can the amniotic membrane be used to treat peripheral nerve defects? A review of literature. Hand Surg Rehabil 2019; 38(4): 223–232.
Google Scholar |
Crossref |
Medline9. Siemionow, M, Uygur, S, Ozturk, C, et al. Techniques and materials for enhancement of peripheral nerve regeneration: a literature review. Microsurgery 2013; 33(4): 318–328.
Google Scholar |
Crossref |
Medline10. Mu, Y, Wu, F, Lu, Y, et al. Progress of electrospun fibers as nerve conduits for neural tissue repair. Nanomedicine 2014; 9(12): 1869–1883.
Google Scholar |
Crossref |
Medline11. Dong, R, Liu, C, Tian, S, et al. Electrospun polycaprolactone (PCL)-amnion nanofibrous membrane prevents adhesions and promotes nerve repair in a rat model of sciatic nerve compression. PLoS One 2020; 15(12): e0244301.
Google Scholar |
Crossref |
Medline12. Milner, AD, Saunders, RA, Hopkin, IE. Effects of continuous distending pressure on lung volumes and lung mechanics in the immediate neonatal period. Biol Neonate 1977; 31(1–2): 111–115.
Google Scholar |
Crossref |
Medline13. Mackinnon, SE, Dellon, AL, Hudson, AR, et al. Chronic nerve compression--an experimental model in the rat. Ann Plast Surg 1984; 13(2): 112–120.
Google Scholar |
Crossref |
Medline14. Meyer, C, Stenberg, L, Gonzalez-Perez, F, et al. Chitosan-film enhanced chitosan nerve guides for long-distance regeneration of peripheral nerves. Biomaterials 2016; 76: 33–51.
Google Scholar |
Crossref |
Medline |
ISI15. Carvalho, CR, López-Cebral, R, Silva-Correia, J, et al. Investigation of cell adhesion in chitosan membranes for peripheral nerve regeneration. Mater Sci Eng C 2017; 71: 1122–1134.
Google Scholar |
Crossref |
Medline16. Ao, Q, Wang, A, Cao, W, et al. Manufacture of multimicrotubule chitosan nerve conduits with novel molds and characterizationin vitro. J Biomed Mater Res A 2006; 77A(1): 11–18.
Google Scholar |
Crossref17. Kaneda, M, Nagashima, M, Mawatari, K, et al. Growth-associated protein43 (GAP43) is a biochemical marker for the whole period of fish optic nerve regeneration. Retin Degenerative Dis 2010; 664: 97–104.
Google Scholar |
Crossref18. Shin, DH, Lee, E, Hyun, J-K, et al. Growth-associated protein-43 is elevated in the injured rat sciatic nerve after low power laser irradiation. Neurosci Lett 2003; 344(2): 71–74.
Google Scholar |
Crossref |
Medline19. Schmittgen, TD, Livak, KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc 2008; 3(6): 1101–1108.
Google Scholar |
Crossref |
Medline |
ISI20. Mustadjab, I, Indrawati, R, Soegianto, S, et al The incidence of fat malabsorption in severe P.E.M. Paediatr Indonesiana 1979; 19(5–6): 123–128.
Google Scholar |
Medline21. Bain, JR, Mackinnon, SE, Hunter, DA. Functional evaluation of complete sciatic, peroneal, and posterior tibial nerve lesions in the rat. Plast Reconstr Surg 1989; 83(1): 129–136.
Google Scholar |
Crossref |
Medline |
ISI22. Kong, L-Q, Zhu, X-D, Xu, H-X, et al. The clinical significance of the CD163+ and CD68+ macrophages in patients with hepatocellular carcinoma. PLoS One 2013; 8(3): e59771.
Google Scholar |
Crossref |
Medline23. Maat, W, Ly, LV, Jordanova, ES, et al. Monosomy of chromosome 3 and an inflammatory phenotype occur together in uveal melanoma. Invest Opthalmology Vis Sci 2008; 49(2): 505–510.
Google Scholar |
Crossref |
Medline24. Mardanpour, K, Rahbar, M, Mardanpour, S. Functional outcomes of 300 carpal tunnel release: 1.5 cm longitudinal mini-incision. Asian Journal Neurosurgery 2019; 14(3): 693–697.
Google Scholar |
Crossref |
Medline25. Yamamoto, T, Narushima, M, Yoshimatsu, H, et al. Free anterolateral thigh flap with vascularized lateral femoral cutaneous nerve for the treatment of neuroma-in-continuity and recurrent carpal tunnel syndrome after carpal tunnel release. Microsurgery 2014; 34(2): 145–148.
Google Scholar |
Crossref |
Medline26. Li, T, Sui, Z, Matsuno, A, et al. Fabrication and evaluation of a xenogeneic decellularized nerve-derived material: preclinical studies of a new strategy for nerve repair. Neurotherapeutics 2020; 17(1): 356–370.
Google Scholar |
Crossref |
Medline27. Zheng, F, Li, R, He, Q, et al. The electrostimulation and scar inhibition effect of chitosan/oxidized hydroxyethyl cellulose/reduced graphene oxide/asiaticoside liposome based hydrogel on peripheral nerve regeneration in vitro. Mater Sci Eng C 2020; 109: 110560.
Google Scholar |
Crossref |
Medline28. Riccio, M, Marchesini, A, Pugliese, P, et al. Nerve repair and regeneration: biological tubulization limits and future perspectives. J Cell Physiol 2019; 234(4): 3362–3375.
Google Scholar |
Crossref |
Medline29. Jhang, J C, Lin, J H, Lou, C W, et al. Biodegradable and conductive PVA/CNT nanofibrous membranes used in nerve conduit applications. J Ind Textiles 2021: 15280837211032086.
Google Scholar |
SAGE Journals30. Kyrylenko, S, Kornienko, V, Gogotsi, O, et al. Bio-functionalization of Electrospun Polymeric Nanofibers by Ti 3 C 2 T x MXene. In: 2020 IEEE 10th international conference nanomaterials: applications & properties (NAP). 2020, pp. 02BA10-1-02BA10-5.
Google Scholar |
Crossref31. Tian, L, Prabhakaran, MP, Hu, J, et al. Synergistic effect of topography, surface chemistry and conductivity of the electrospun nanofibrous scaffold on cellular response of PC12 cells. Colloids Surf B Biointerfaces 2016; 145: 420–429.
Google Scholar |
Crossref |
Medline32. Pogorielov, M, Hapchenko, A, Deineka, V, et al. In vitro degradation and in vivo toxicity of NanoMatrix3D((R)) polycaprolactone and poly(lactic acid) nanofibrous scaffolds. J Biomed Mater Res A 2018; 106(8): 2200–2212.
Google Scholar |
Crossref |
Medline33. Chen, X, Ge, X, Qian, Y, et al. Electrospinning multilayered scaffolds loaded with melatonin and Fe3O4 magnetic nanoparticles for peripheral nerve regeneration. Adv Funct Mater 2020; 30(38): 2004537.
Google Scholar |
Crossref34. Koob, TJ, Lim, JJ, Zabek, N, et al. Cytokines in single layer amnion allografts compared to multilayer amnion/chorion allografts for wound healing. J Biomed Mater Res B: Appl Biomater 2015; 103(5): 1133–1140.
Google Scholar |
Crossref |
Medline35. Ye, H, Zhu, J, Deng, D, et al. Enhanced osteogenesis and angiogenesis by PCL/chitosan/Sr-doped calcium phosphate electrospun nanocomposite membrane for guided bone regeneration. J Biomater Sci Polym Edition 2019; 30(16): 1505–1522.
Google Scholar |
Crossref |
Medline36. Zhou, G, Jiang, H, Yin, Z, et al. In vitro regeneration of patient-specific ear-shaped cartilage and its first clinical application for auricular reconstruction. EBioMedicine 2018; 28: 287–302.
Google Scholar |
Crossref |
Medline37. Tran, N, Le, A, Ho, M, et al. Polyurethane/polycaprolactone membrane grafted with conjugated linoleic acid for artificial vascular graft application. Sci Technology Adv Mater 2020; 21(1): 56–66.
Google Scholar |
Crossref |
Medline38. Otani, Y, Yermakov, LM, Dupree, JL, et al. Chronic peripheral nerve compression disrupts paranodal axoglial junctions. Muscle & Nerve 2017; 55(4): 544–554.
Google Scholar |
Crossref |
Medline39. Mackinnon, SE . Pathophysiology of nerve compression. Hand Clin 2002; 18(2): 231–241.
Google Scholar |
Crossref |
Medline |
ISI40. Zheng, H, Chen, C, Zhang, J, et al. Mechanism and therapy of brain edema after intracerebral hemorrhage. Cerebrovasc Diseases (Basel, Switzerland) 2016; 42(3–4): 155–169.
Google Scholar |
Crossref |
Medline41. Jirsova, K, Jones, GLA. Amniotic membrane in ophthalmology: properties, preparation, storage and indications for grafting-a review. Cell and Tissue Banking 2017; 18(2): 193–204.
Google Scholar |
Crossref |
Medline42. Cai, B, Li, J, Wang, J, et al. microRNA-124 regulates cardiomyocyte differentiation of bone marrow-derived mesenchymal stem cells via targeting STAT3 signaling. Stem Cells 2012; 30(8): 1746–1755.
Google Scholar |
Crossref |
Medline43. Wang, Z, Yuan, W, Li, B, et al. PEITC promotes neurite growth in primary sensory neurons via the miR-17-5p/STAT3/GAP-43 axis. J Drug Target 2019; 27(1): 82–93.
Google Scholar |
Crossref |
Medline
留言 (0)