1. Hensley, BJ, Monson, JRT. Hospital-acquired infections. Surgery 2015; 33(11): 528–533.
Google Scholar2. Arciola, CR, Campoccia, D, Speziale, P, et al. Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials 2012; 33: 5967–5982.
Google Scholar |
Crossref |
Medline |
ISI3. Shah, H, Bosch, W, Thompson, KM, et al. Intravascular catheter-related bloodstream infection. The Neurohospitalist 2013; 3(3): 144–151.
Google Scholar |
SAGE Journals4. Percival, SL, Suleman, L, Vuotto, C, et al. Healthcare-associated infections, medical devices and biofilms: Risk, tolerance and control. J Med Microbiol 2015; 64: 323–334.
Google Scholar |
Crossref |
Medline5. Magill, SS, O’Leary, E, Janelle, SJ, et al. Changes in prevalence of health care-associated infections in U.S. hospitals. N Engl J Med 2018; 379(18): 1732–1744.
Google Scholar |
Crossref |
Medline6. Zarb, P, Coignard, B, Griskeviciene, J, et al. The European centre for disease prevention and control (ECDC) pilot point prevalence survey of healthcare-associated infections and antimicrobial use. Euro Surveill 2012; 17(46): 20316.
Google Scholar |
Crossref |
Medline7. Sun, D, Shahzad, MB, Li, M, et al. Antimicrobial materials with medical applications. Mater Technol 2015; 30(B2): B90–B95.
Google Scholar |
Crossref8. Zhao, L, Jiang, L, Li, H, et al. Synthesis and characterization of silver-incorporated calcium phosphate antibacterial nanocomposites for mask filtration material. Composites B 2018; 153: 387–392.
Google Scholar |
Crossref9. Agrawal, N, Low, PS, Tan, JSJ, et al. Durable easy-cleaning and antibacterial cotton fabrics using fluorine-free silane coupling agents and CuO nanoparticles. Nano Mater Sci 2019; 2(3): 281–291.
Google Scholar |
Crossref10. Homaeigohar, S, Boccaccini, AR. Antibacterial biohybrid nanofibers for wound dressings. Acta Biomater 2020; 107: 25–49.
Google Scholar |
Crossref |
Medline11. Cao, GF, Sun, Y, Chen, JG, et al. Sutures modified by silver-loaded montmorillonite with antibacterial properties. Appl Clay Sci 2014; 93–94: 102–106.
Google Scholar |
Crossref |
ISI12. Chigama, H, Kanetaka, H, Furuya, M, et al. Evaluation of apatite-forming ability and antibacterial activity of raw silk fabrics doped with metal ions. Mater Tran 2019; 60(5): 808–814.
Google Scholar |
Crossref13. Garland, EM, Parr, JM, Williamson, DS, et al. In vitro cytotoxicity of the sodium, potassium and calcium salts of saccharin, sodium ascorbate, sodium citrate and sodium chloride. Toxicol Vitro 1989; 3(3): 201–205.
Google Scholar |
Crossref |
Medline14. Yamamoto, A, Honma, R, Sumita, M. Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells. J Biomed Mater Res 1998; 39: 331–340.
Google Scholar |
Crossref |
Medline |
ISI15. Terada, S, Nishimura, T, Sasaki, M, et al. Sericin, a protein derived from silkworms, accelerated the proliferation of several mammalian cell lines including a hybridoma. Cytotechnology 1980; 40: 3–12.
Google Scholar |
Crossref16. Tsubouchi, K, Igarashi, Y, Takasu, Y, et al. Sericin enhances attachment of cultured human skin fibroblasts. Biosci Biotechnol Biochem 2005; 69(2): 403–405.
Google Scholar |
Crossref |
Medline17. Aramwit, P, Kanokpanont, S, De-Eknamkul, W, et al. Monitoring of inflammatory mediators induced by silk sericin. J Biosci Bioeng 2009; 107(5): 556–561.
Google Scholar |
Crossref |
Medline18. Gilotra, S, Chouhan, D, Bhardwaj, N, et al. Potential of silk sericin based nanofibrous mats for wound dressing applications. Mater Sci Eng C 2018; 90: 420–432.
Google Scholar |
Crossref |
Medline19. Mondal, M, Trivedy, K, Nirmal Kumar, S. The silk proteins, sericin and fibroin in silkworm. Caspian J Env Sci 2007; 5(2): 63–76.
Google Scholar20. Lakens, D . Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front Psychol 2013; 4: 1–12.
Google Scholar |
Crossref |
Medline21. Altman, GH, Diaz, F, Jakuba, C, et al. Silk-based biomaterials. Biomaterials 2003; 24(3): 401–416.
Google Scholar |
Crossref |
Medline |
ISI22. Ajisawa, A . Dissolution aqueous of silk fibroin with calciumchloride/ethanol solution. J Sericultural Sci Japan 1998; 67(2): 91–94.
Google Scholar23. Acharya, C, Ghosh, SK, Kundu, SC. Silk fibroin protein from mulberry and non-mulberry silkworms: cytotoxicity, biocompatibility and kinetics of L929 murine fibroblast adhesion. J Mater Sci Mater Med 2008; 19: 2827–2836.
Google Scholar |
Crossref |
Medline |
ISI24. Unger, RE, Wolf, M, Peters, K, et al. Growth of human cells on a non-woven silk fibroin net: A potential for use in tissue engineering. Biomaterials 2004; 25(6): 1069–1075.
Google Scholar |
Crossref |
Medline |
ISI25. Pinton, P, Giorgi, C, Siviero, R, et al. Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene 2008; 27: 6407–6418.
Google Scholar |
Crossref |
Medline |
ISI26. An, S, Gao, Y, Huang, Y, et al. Short-term effects of calcium ions on the apoptosis and onset of mineralization of human dental pulp cells in vitro and in vivo. Int J Mol Med 2015; 36(1): 215–221.
Google Scholar |
Crossref |
Medline27. Cao, B, Zheng, Y, Xi, T, et al. Concentration-dependent cytotoxicity of copper ions on mouse fibroblasts in vitro: effects of copper ion release from TCu380A vs TCu220C intra-uterine devices. Biomed Microdevices 2012; 14(4): 709–720.
Google Scholar |
Crossref |
Medline28. Bremner, I . Manifestations of copper excess. Am J Clin Nutr 1998; 67(5): 1069S–1073S.
Google Scholar |
Crossref |
Medline29. Borovanský, J, Riley, PA. Cytotoxicity of zinc in vitro. Chem Biol Interact 1989; 69(2–3): 279–291.
Google Scholar |
Crossref |
Medline30. Shen, C, James, SA, De Jonge, MD, et al. Relating cytotoxicity, zinc ions, and reactive oxygen in ZnO nanoparticle-exposed human immune cells. Toxicol Sci 2013; 136(1): 120–130.
Google Scholar |
Crossref |
Medline |
ISI31. Borkow, G . Using copper to improve the well-being of the skin. Curr Chem Biol 2015; 8(2): 89–102.
Google Scholar |
Crossref32. Tyszka-Czochara, M, Paśko, P, Reczyński, W, et al. Zinc and propolis reduces cytotoxicity and proliferation in skin fibroblast cell culture: total polyphenol content and antioxidant capacity of propolis. Biol Trace Elem Res 2014; 160(1): 123–131.
Google Scholar |
Crossref |
Medline33. Gundogdu, G, Gundogdu, K, Nalci, KA, et al. The effect of parietin isolated from Rheum ribes L on in vitro wound model using human dermal fibroblast cells. Int J Low Extrem Wounds 2019; 18(1): 56–64.
Google Scholar |
SAGE Journals |
ISI34. Okazaki, Y, Asao, S, Rao, S, et al. Effect of concentration of Zr, Sn, Nb, Ta, Pd, Co, Cr, Si, Ni, Fe on the relative growth ratios of bio-cells. J Japan Inst Met 1996; 60(9): 902–906.
Google Scholar |
Crossref35. Coulomb, HM, Gu, ZW, Loireau, MP, et al. Effect of serum concentration on the cytotoxicity and sister chromatid exchange induction by a chemical carcinogen and by a diesel particulate extract in V79 hamster cells. Cancer Lett 1984; 22(1): 77–82.
Google Scholar |
Crossref |
Medline36. Lordan, S, Higginbotham, CL. Effect of serum concentration on the cytotoxicity of clay particles. Cell Biol Int 2012; 36(1): 57–61.
Google Scholar |
Crossref |
Medline37. Li, K, Xia, C, Qiao, Y, et al. Dose-response relationships between copper and its biocompatibility/antibacterial activities. J Trace Elem Med Biol 2019; 55: 127–135.
Google Scholar |
Crossref |
Medline38. Brauer, DS, Gentleman, E, Farrar, DF, et al. Benefits and drawbacks of zinc in glass ionomer bone cements. Biomed Mater 2011; 6(4): 045007.
Google Scholar |
Crossref |
Medline39. Yamaguchi, M, Kishi, S, Hashizume, M. Effect of zinc-chelating dipeptides on osteoblastic MC3T3-E1 cells: activation of aminoacyl-tRNA synthetase. Peptides 1994; 15(8): 1367–1371.
Google Scholar |
Crossref |
Medline40. O’Connor, JP, Kanjilal, D, Teitelbaum, M, et al. Zinc as a therapeutic agent in bone regeneration. Materials (Basel) 2020; 13(10): 2211.
Google Scholar |
Crossref
留言 (0)