Intrathecal Administration of an Anti‐nociceptive Non-CpG Oligodeoxynucleotide Reduces Glial Activation and Central Sensitization

Ahmed AS, Li J, Ahmed M et al (2010) Attenuation of pain and inflammation in adjuvant-induced arthritis by the proteasome inhibitor MG132. Arthritis Rheum 62:2160–2169. https://doi.org/10.1002/art.27492

Article  PubMed  CAS  Google Scholar 

Alvarez P, Hernández A, Constandil L et al (2014) Stage-dependent C-reflex, pain-like behavior and opioid analgesia during the induction of chronic arthritis in rats. Eur J Neurosci 40:3264–3272. https://doi.org/10.1111/ejn.12685

Article  PubMed  Google Scholar 

Auzmendi J, Moffatt L, Ramos AJ (2020) Predicting reactive astrogliosis propagation by Bayesian computational modeling: the repeater stations model. Mol Neurobiol 57:879–895. https://doi.org/10.1007/s12035-019-01749-9

Article  PubMed  CAS  Google Scholar 

Ayoub AE, Salm AK (2003) Increased morphological diversity of microglia in the activated hypothalamic supraoptic nucleus. J Neurosci 23:7759–7766. https://doi.org/10.1523/jneurosci.23-21-07759.2003

Article  PubMed  PubMed Central  CAS  Google Scholar 

Basbaum AI, Bautista DM, Scherrer G, Julius D (2009) Cellular and molecular mechanisms of pain. Cell 139:267–284. https://doi.org/10.1016/j.cell.2009.09.028

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bauer S, Kirschning CJ, Häcker H et al (2001) Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci U S A 98:9237–9242. https://doi.org/10.1073/pnas.161293498

Article  PubMed  PubMed Central  CAS  Google Scholar 

Beart PM, O’Shea RD (2007) Transporters for L-glutamate: an update on their molecular pharmacology and pathological involvement. Br J Pharmacol 150:5–17. https://doi.org/10.1038/sj.bjp.0706949

Article  PubMed  CAS  Google Scholar 

Ben HL, Carrillo-de Sauvage MA, Ceyzériat K, Escartin C (2015) Elusive roles for reactive astrocytes in neurodegenerative diseases. Front Cell Neurosci 9:1–27. https://doi.org/10.3389/fncel.2015.00278

Article  CAS  Google Scholar 

Bruno K, Woller SA, Miller YI et al (2018) Targeting toll-like receptor-4 (TLR4)-an emerging therapeutic target for persistent pain states. Pain 159:1908–1915. https://doi.org/10.1097/j.pain.0000000000001306

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chahin A, Opal SM, Zorzopulos J et al (2015) The novel immunotherapeutic oligodeoxynucleotide imt504 protects neutropenic animals from fatal pseudomonas aeruginosa bacteremia and sepsis. Antimicrob Agents Chemother 59:1225–1229. https://doi.org/10.1128/AAC.03923-14

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chaplan SR, Bach FW, Pogrel JW et al (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53:55–63. https://doi.org/10.1016/0165-0270(94)90144-9

Article  PubMed  CAS  Google Scholar 

Coronel MF, Hernando-Insúa A, Rodriguez JM et al (2008) Oligonucleotide IMT504 reduces neuropathic pain after peripheral nerve injury. Neurosci Lett 444:69–73. https://doi.org/10.1016/j.neulet.2008.07.045

Article  PubMed  CAS  Google Scholar 

Costigan M, Moss A, Latremoliere A et al (2009) T-cell infiltration and signaling in the adult dorsal spinal cord is a major contributor to neuropathic pain-like hypersensitivity. J Neurosci 29:14415–14422. https://doi.org/10.1523/JNEUROSCI.4569-09.2009

Article  PubMed  PubMed Central  CAS  Google Scholar 

Doyle SL, O’Neill LAJ (2006) Toll-like receptors: From the discovery of NFκB to new insights into transcriptional regulations in innate immunity. Biochem Pharmacol 72:1102–1113. https://doi.org/10.1016/j.bcp.2006.07.010

Article  PubMed  CAS  Google Scholar 

Elias F, Flo J, Lopez RA et al (2003) Strong cytosine-guanosine-independent immunostimulation in humans and other primates by synthetic oligodeoxynucleotides with PyNTTTTGT motifs. J Immunol 171:3697–3704. https://doi.org/10.4049/jimmunol.171.7.3697

Article  PubMed  CAS  Google Scholar 

Elias F, Flo J, Rodriguez JM et al (2005) PyNTTTTGT prototype oligonucleotide IMT504 is a potent adjuvant for the recombinant Hepatitis B vaccine that enhances the Th1 response. Vaccine 23:3597–3603. https://doi.org/10.1016/j.vaccine.2004.12.030

Article  PubMed  CAS  Google Scholar 

Franco R, Rodriguez JM, Elías F et al (2014) Non-clinical safety studies of IMT504, a unique non-CpG oligonucleotide. Nucleic Acid Ther 24:267–282. https://doi.org/10.1089/nat.2013.0479

Article  PubMed  PubMed Central  CAS  Google Scholar 

Fu ES, Zhang YP, Sagen J et al (2007) Transgenic glial nuclear factor-kappa B inhibition decreases formalin pain in mice. Neuroreport 18:713–717. https://doi.org/10.1097/WNR.0b013e3280d9e869

Article  PubMed  CAS  Google Scholar 

Gao YJ, Ji RR (2010a) Chemokines, neuronal-glial interactions, and central processing of neuropathic pain. Pharmacol Ther 126:56–68. https://doi.org/10.1016/j.pharmthera.2010.01.002

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gao YJ, Ji RR (2010b) Targeting astrocyte signaling for chronic pain. Neurotherapeutics 7:482–493. https://doi.org/10.1016/j.nurt.2010.05.016

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gao YJ, Xu ZZ, Liu YC et al (2010) The c-Jun N-terminal kinase 1 (JNK1) in spinal astrocytes is required for the maintenance of bilateral mechanical allodynia under a persistent inflammatory pain condition. Pain 148:309–319. https://doi.org/10.1016/j.pain.2009.11.017

Article  PubMed  PubMed Central  CAS  Google Scholar 

Geary RS, Norris D, Yu R, Bennett CF (2015) Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv Drug Deliv Rev 87:46–51. https://doi.org/10.1016/j.addr.2015.01.008

Article  PubMed  CAS  Google Scholar 

Guo W, Wang H, Watanabe M et al (2007) Glial-cytokine-neuronal interactions underlying the mechanisms of persistent pain. J Neurosci 27:6006–6018. https://doi.org/10.1523/JNEUROSCI.0176-07.2007

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hernando-Insúa A, Montaner AD, Rodriguez JM et al (2007) IMT504, the prototype of the immunostimulatory oligonucleotides of the PyNTTTTGT class, increases the number of progenitors of mesenchymal stem cells both in vitro and in vivo: potential use in tissue repair therapy. Stem Cells 25:1047–1054. https://doi.org/10.1634/stemcells.2006-0479

Article  PubMed  Google Scholar 

Hoffmann S, Beyer C (2020) A fatal alliance between microglia, inflammasomes, and central pain. Int J Mol Sci 21:1–13. https://doi.org/10.3390/ijms21113764

Article  CAS  Google Scholar 

Huang YH, Bergles DE (2004) Glutamate transporters bring competition to the synapse. Curr Opin Neurobiol 14:346–352. https://doi.org/10.1016/j.conb.2004.05.007

Article  PubMed  CAS  Google Scholar 

Jaeger LB, Banks WA (2005) Transport of antisense across the blood-brain barrier. Methods Mol Med 106:237–251. https://doi.org/10.1385/1-59259-854-4:237

Article  PubMed  CAS  Google Scholar 

Ji RR, Berta T, Nedergaard M (2013) Glia and pain: Is chronic pain a gliopathy? Pain 154:10–28. https://doi.org/10.1016/j.pain.2013.06.022

Article  Google Scholar 

Ji RR, Chamessian A, Zhang YQ (2016) Pain regulation by non-neuronal cells and inflammation. Science 354:572–577. https://doi.org/10.1126/science.aaf8924

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ji RR, Nackley A, Huh Y et al (2018) Neuroinflammation and central sensitization in chronic and widespread pain. Anesthesiology 129:343–366. https://doi.org/10.1097/ALN.0000000000002130

Article  Google Scholar 

Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34:637–650. https://doi.org/10.1016/j.immuni.2011.05.006

Article  PubMed  CAS  Google Scholar 

Kayser V, Guilbaud G (1990) Differential effects of various doses of morphine and naloxone on two nociceptive test thresholds in arthritic and normal rats. Pain 41:353–363. https://doi.org/10.1016/0304-3959(90)90012-3

Article  PubMed  CAS  Google Scholar 

Keating A (2012) Mesenchymal stromal cells: New directions. Cell Stem Cell 10:709–716. https://doi.org/10.1016/j.stem.2012.05.015

Article  PubMed  CAS  Google Scholar 

Krieg AM, Yi AK, Matson S et al (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374:546–549. https://doi.org/10.1038/374546a0

Article  PubMed  CAS  Google Scholar 

Krug A, Towarowski A, Britsch S, et al (2001) Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with Cd40 ligand to induce high amounts of IL-12. Eur J Immunol 31:3026–3037. https://doi.org/10.1002/1521-4141(2001010)31:10<3026::AID-IMMU3026>3.0.CO;2-H

Article  PubMed  CAS  Google Scholar 

Lacagnina MJ, Watkins LR, Grace PM (2018) Toll-like receptors and their role in persistent pain. Pharmacol Ther 184:145–158. https://doi.org/10.1016/j.pharmthera.2017.10.006

Article  PubMed  CAS  Google Scholar 

Le Blanc K, Mougiakakos D (2012) Multipotent mesenchymal stromal cells and the innate immune system. Nat Rev Immunol 12:383–396. https://doi.org/10.1038/nri3209

Article  PubMed  CAS  Google Scholar 

Ledeboer A, Gamanos M, Lai W et al (2005a) Involvement of spinal cord nuclear factor κB activation in rat models of proinflammatory cytokine-mediated pain facilitation. Eur J Neurosci 22:1977–1986. https://doi.org/10.1111/j.1460-9568.2005.04379.x

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif