Activation of the CXCR4 Receptor by Chemokine CXCL12 Increases the Excitability of Neurons in the Rat Central Amygdala

Adler MW, Rogers TJ (2005) Are chemokines the third major system in the brain? J Leukoc Biol 78:1204–1209. https://doi.org/10.1189/jlb.0405222

Article  CAS  PubMed  Google Scholar 

Bajo M, Varodayan FP, Madamba SG et al (2015) IL-1 interacts with ethanol effects on GABAergic transmission in the mouse central amygdala. Front Pharmacol 6:49. https://doi.org/10.3389/fphar.2015.00049

Article  CAS  PubMed  PubMed Central  Google Scholar 

Banisadr G, Fontanges P, Haour F et al (2002) Neuroanatomical distribution of CXCR4 in adult rat brain and its localization in cholinergic and dopaminergic neurons. Eur J Neurosci 16:1661–1671. https://doi.org/10.1046/j.1460-9568.2002.02237.x

Article  PubMed  Google Scholar 

Callewaere C, Banisadr G, Desarménien MG et al (2006) The chemokine SDF-1/CXCL12 modulates the firing pattern of vasopressin neurons and counteracts induced vasopressin release through CXCR4. Proc Natl Acad Sci USA 103:8221–8226. https://doi.org/10.1073/pnas.0602620103

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Cassell MD, Gray TS (1989) Morphology of peptide-immunoreactive neurons in the rat central nucleus of the amygdala. J Comp Neurol 281:320–333. https://doi.org/10.1002/cne.902810212

Article  CAS  PubMed  Google Scholar 

Ciocchi S, Herry C, Grenier F et al (2010) Encoding of conditioned fear in central amygdala inhibitory circuits. Nature 468:277–282. https://doi.org/10.1038/nature09559

Article  ADS  CAS  PubMed  Google Scholar 

Dantzer R (2001) Cytokine-induced sickness behavior: mechanisms and implications. Ann N Y Acad Sci 933:222–234. https://doi.org/10.1111/j.1749-6632.2001.tb05827.x

Article  ADS  CAS  PubMed  Google Scholar 

Dantzer R, Kelley KW (2007) Twenty years of research on cytokine-induced sickness behavior. Brain Behav Immun 21:153–160. https://doi.org/10.1016/j.bbi.2006.09.006

Article  CAS  PubMed  Google Scholar 

Duvarci S, Pare D (2014) Amygdala microcircuits controlling learned fear. Neuron 82:966–980. https://doi.org/10.1016/j.neuron.2014.04.042

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ehrlich I, Humeau Y, Grenier F et al (2009) Amygdala inhibitory circuits and the control of fear memory. Neuron 62:757–771. https://doi.org/10.1016/j.neuron.2009.05.026

Article  CAS  PubMed  Google Scholar 

Faber ESL, Sah P (2002) Physiological role of calcium-activated potassium currents in the rat lateral amygdala. J Neurosci 22:1618–1628

Article  CAS  PubMed  PubMed Central  Google Scholar 

Freeman K, Staehle MM, Vadigepalli R et al (2013) Coordinated dynamic gene expression changes in the central nucleus of the amygdala during alcohol withdrawal. Alcohol Clin Exp Res 37 Suppl 1E88–100. https://doi.org/10.1111/j.1530-0277.2012.01910.x

Fumagalli A, Heuninck J, Pizzoccaro A et al (2020) The atypical chemokine receptor 3 interacts with connexin 43 inhibiting astrocytic gap junctional intercellular communication. Nat Commun 11:4855. https://doi.org/10.1038/s41467-020-18634-y

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Gilpin NW, Herman MA, Roberto M (2015) The central amygdala as an integrative hub for anxiety and alcohol use disorders. Biol Psychiatry 77:859–869. https://doi.org/10.1016/j.biopsych.2014.09.008

Article  PubMed  Google Scholar 

Group PIN, Ascoli GA, Alonso-Nanclares L et al (2008) Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci 9:557–568. https://doi.org/10.1038/nrn2402

Article  CAS  Google Scholar 

Guyon A, Banisadr G, Rovère C et al (2005) Complex effects of stromal cell-derived factor-1 alpha on melanin-concentrating hormone neuron excitability. Eur J Neurosci 21:701–710. https://doi.org/10.1111/j.1460-9568.2005.03890.x

Article  CAS  PubMed  Google Scholar 

Guyon A, Skrzydelsi D, Rovère C et al (2006) Stromal cell-derived factor-1alpha modulation of the excitability of rat substantia nigra dopaminergic neurones: presynaptic mechanisms. J Neurochem 96:1540–1550. https://doi.org/10.1111/j.1471-4159.2006.03659.x

Article  CAS  PubMed  Google Scholar 

Guyon A, Skrzydelski D, Rovère C et al (2008) Stromal-cell-derived factor 1alpha /CXCL12 modulates high-threshold calcium currents in rat substantia nigra. Eur J Neurosci 28:862–870. https://doi.org/10.1111/j.1460-9568.2008.06367.x

Article  CAS  PubMed  Google Scholar 

Harper KM, Knapp DJ, Todd CA et al (2020) Phenotyping CCL2 containing central amygdala neurons controlling alcohol withdrawal-induced anxiety. Front Cell Neurosci 14:580583. https://doi.org/10.3389/fncel.2020.580583

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haubensak W, Kunwar PS, Cai H et al (2010) Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature 468:270–276. https://doi.org/10.1038/nature09553

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Heinisch S, Kirby LG (2010) SDF-1alpha/CXCL12 enhances GABA and glutamate synaptic activity at serotonin neurons in the rat dorsal raphe nucleus. Neuropharmacology 58:501–514. https://doi.org/10.1016/j.neuropharm.2009.08.022

Article  CAS  PubMed  Google Scholar 

Heinisch S, Palma J, Kirby LG (2011) Interactions between chemokine and mu-opioid receptors: anatomical findings and electrophysiological studies in the rat periaqueductal grey. Brain Behav Immun 25:360–372. https://doi.org/10.1016/j.bbi.2010.10.020

Article  CAS  PubMed  Google Scholar 

Herry C, Ferraguti F, Singewald N et al (2010) Neuronal circuits of fear extinction. Eur J Neurosci 31:599–612. https://doi.org/10.1111/j.1460-9568.2010.07101.x

Article  PubMed  Google Scholar 

Hou W-H, Kuo N, Fang G-W et al (2016) Wiring specificity and synaptic diversity in the mouse lateral central amygdala. J Neurosci 36:4549–4563. https://doi.org/10.1523/.3309-15.2016

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hunt S, Sun Y, Kucukdereli H et al (2017) Intrinsic circuits in the lateral central amygdala. Eneuro 4. https://doi.org/10.1523/.0367-16.2017

Janak PH, Tye KM (2015) From circuits to behaviour in the amygdala. Nature 517:284–292. https://doi.org/10.1038/nature14188

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Kalin NH, Shelton SE, Engeland CG et al (2006) Stress decreases, while central nucleus amygdala lesions increase, IL-8 and MIP-1alpha gene expression during tissue healing in non-human primates. Brain Behav Immun 20:564–568. https://doi.org/10.1016/j.bbi.2006.01.003

Article  CAS  PubMed  Google Scholar 

Kasiyanov A, Fujii N, Tamamura H, Xiong H (2008) Modulation of network-driven, GABA-mediated giant depolarizing potentials by SDF-1alpha in the developing hippocampus. Dev Neurosci 30:285–292. https://doi.org/10.1159/000112520

Article  CAS  PubMed  Google Scholar 

Krettek JE, Price JL (1978) A description of the amygdaloid complex in the rat and cat with observations on intra-amygdaloid axonal connections. J Comp Neurol 178:255–280. https://doi.org/10.1002/cne.901780205

Article  CAS  PubMed  Google Scholar 

LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184. https://doi.org/10.1146/annurev.neuro.23.1.155

Article  CAS  PubMed  Google Scholar 

Levoye A, Balabanian K, Baleux F et al (2009) CXCR7 heterodimerizes with CXCR4 and regulates CXCL12-mediated g protein signaling. Blood 113:6085–6093. https://doi.org/10.1182/blood-2008-12-196618

Article  CAS  PubMed  Google Scholar 

Li H, Penzo MA, Taniguchi H et al (2013) Experience-dependent modification of a central amygdala fear circuit. Nat Neurosci 16:332–339. https://doi.org/10.1038/nn.3322

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li Z-Q, Yan Z-Y, Lan F-J et al (2018) Suppression of NLRP3 inflammasome attenuates stress-induced depression-like behavior in NLGN3-deficient mice. Biochem Biophys Res Commun 501:933–940. https://doi.org/10.1016/j.bbrc.2018.05.085

Article  CAS  PubMed  Google Scholar 

Limatola C, Ciotti MT, Mercanti D et al (2000) The chemokine growth-related gene product beta protects rat cerebellar granule cells from apoptotic cell death through alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors. Proc Natl Acad Sci USA 97:6197–6201. https://doi.org/10.1073/pnas.090105997

Article  ADS  CAS  PubMed 

留言 (0)

沒有登入
gif