Potential Molecular Mechanisms and Remdesivir Treatment for Acute Respiratory Syndrome Corona Virus 2 Infection/COVID 19 Through RNA Sequencing and Bioinformatics Analysis

1. Alhazzani, W, Møller, MH, Arabi, YM, et al. Surviving Sepsis Campaign: guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19). Intensive Care Med. 2020;46:854-887.
Google Scholar | Crossref | Medline2. Ferner, RE, Aronson, JK. Remdesivir in covid-19. BMJ. 2020;369:m1610.
Google Scholar3. Elsawah, HK, Elsokary, MA, Abdallah, MS, ElShafie, AH. Efficacy and safety of remdesivir in hospitalized Covid-19 patients: systematic review and meta-analysis including network meta-analysis. Rev Med Virol. 2021;31:e2187.
Google Scholar | Crossref | Medline4. Steuerman, Y, Cohen, M, Peshes-Yaloz, N, et al. Dissection of influenza infection in vivo by single-cell RNA sequencing. Cell Syst. 2018;6:679-691e4.
Google Scholar | Medline5. Souza, GAP, Salvador, EA, de Oliveira, FR, Cotta Malaquias, LC, Abrahão, JS, Leomil Coelho, LF. An in silico integrative protocol for identifying key genes and pathways useful to understand emerging virus disease pathogenesis. Virus Res. 2020;284:197986.
Google Scholar | Crossref | Medline6. Barrett, T, Wilhite, SE, Ledoux, P, et al. NCBI GEO: archive for functional genomics data sets —update. Nucleic Acids Res. 2013;41:D991-D995.
Google Scholar | Medline7. Ritchie, ME, Phipson, B, Wu, DI, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.
Google Scholar | Crossref8. Abbas, A, Kong, XB, Liu, Z, Jing, BY, Gao, X. Automatic peak selection by a Benjamini-Hochberg-based algorithm. PLoS ONE. 2013;8:e53112.
Google Scholar | Crossref9. Caspi, R, Billington, R, Ferrer, L, et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 2016;44:D471-D480.
Google Scholar | Crossref | Medline10. Kanehisa, M, Sato, Y, Furumichi, M, Morishima, K, Tanabe, M. New approach for understanding genome variations in KEGG. Nucleic Acids Res. 2019;47:D590-D595.
Google Scholar | Crossref | Medline11. Schaefer, CF, Anthony, K, Krupa, S, et al. PID: the Pathway Interaction Database. Nucleic Acids Res. 2009;37:D674-D679.
Google Scholar | Crossref12. Fabregat, A, Jupe, S, Matthews, L, et al. The Reactome Pathway Knowledgebase. Nucleic Acids Res. 2018;46:D649-D655.
Google Scholar | Crossref13. Dahlquist, KD, Salomonis, N, Vranizan, K, Lawlor, SC, Conklin, BR. GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat Genet. 2002;31:19-20.
Google Scholar | Crossref | Medline | ISI14. Subramanian, A, Tamayo, P, Mootha, VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545-15550.
Google Scholar | Crossref | Medline | ISI15. Mi, H, Huang, X, Muruganujan, A, et al. PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res. 2017;45:D183-D189.
Google Scholar | Crossref16. Petri, V, Jayaraman, P, Tutaj, M, et al. The pathway ontology—updates and applications. J Biomed Semantics. 2014;5:7.
Google Scholar | Crossref | Medline17. Jewison, T, Su, Y, Disfany, FM, et al. SMPDB 2.0: big improvements to the Small Molecule Pathway Database. Nucleic Acids Res. 2014;42:D478-D484.
Google Scholar | Crossref18. Chen, J, Bardes, EE, Aronow, BJ, Jegga, AG. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009;37:W305-W311.
Google Scholar | Crossref19. Lewis, SE . The vision and challenges of the gene ontology. Methods Mol Biol. 2017;1446:291-302.
Google Scholar | Crossref | Medline20. Orchard, S, Kerrien, S, Abbani, S, et al. Protein interaction data curation: the International Molecular Exchange (IMEx) consortium. Nat Methods. 2012;9:345-350.
Google Scholar | Crossref | Medline21. Salwinski, L, Miller, CS, Smith, AJ, Pettit, FK, Bowie, JU, Eisenberg, D. The Database of Interacting Proteins: 2004 update. Nucleic Acids Res. 2004;32:D449-D451.
Google Scholar | Crossref | Medline22. Orchard, S, Ammari, M, Aranda, B, et al. The MIntAct project—IntAct as a common curation platform for 11—molecular interaction databases. Nucleic Acids Res. 2014;42:D358-D363.
Google Scholar | Crossref | Medline23. Licata, L, Briganti, L, Peluso, D, et al. MINT, the molecular interaction database: 2012 update. Nucleic Acids Res. 2012;40:D857-D861.
Google Scholar | Crossref | Medline24. Breuer, K, Foroushani, AK, Laird, MR, et al. InnateDB: systems biology of innate immunity and beyond—recent updates and continuing curation. Nucleic Acids Res. 2013;41:D1228-D1233.
Google Scholar | Crossref25. Keshava Prasad, TS, Goel, R, Kandasamy, K, et al. Human Protein Reference Database - 2009 update. Nucleic Acids Res. 2009;37:D767-D772.
Google Scholar | Crossref26. Oughtred, R, Stark, C, Breitkreutz, BJ, et al. The BioGRID interaction database: 2019 update. Nucleic Acids Res. 2019;47:D529-D541.
Google Scholar | Crossref | Medline27. Kotlyar, M, Pastrello, C, Malik, Z, Jurisica, I. IID 2018 update: context-specific physical protein-protein interactions in human, model organisms and domesticated species. Nucleic Acids Res. 2019;47:D581-D589.
Google Scholar | Crossref | Medline28. Clerc, O, Deniaud, M, Vallet, SD, et al. MatrixDB: integration of new data with a focus on glycosaminoglycan interactions. Nucleic Acids Res. 2019;47:D376-D381.
Google Scholar | Crossref | Medline29. Shannon, P, Markiel, A, Ozier, O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498-2504.
Google Scholar | Crossref | Medline | ISI30. Przulj, N, Wigle, DA, Jurisica, I. Functional topology in a network of protein interactions. Bioinformatics. 2004;20:340-348.
Google Scholar | Crossref | Medline31. Nguyen, TP, Liu, WC, Jordán, F. Inferring pleiotropy by network analysis: linked diseases in the human PPI network. BMC Syst Biol. 2011;5:179.
Google Scholar | Crossref | Medline32. Shi, Z, Zhang, B. Fast network centrality analysis using GPUs. BMC Bioinformatics. 2011;12:149.
Google Scholar | Crossref | Medline33. Wang, J, Li, M, Wang, H, Pan, Y. Identification of essential proteins based on edge clustering coefficient. IEEE/ACM Trans Comput Biol Bioinform. 2012;9:1070-1080.
Google Scholar | Crossref | Medline34. Zaki, N, Efimov, D, Berengueres, J. Protein complex detection using interaction reliability assessment and weighted clustering coefficient. BMC Bioinformatics. 2013;14:163.
Google Scholar | Crossref | Medline35. Fan, Y, Xia, J. miRNet-Functional analysis and visual exploration of miRNA-Target interactions in a network context. Methods Mol Biol. 2018;1819:215-233.
Google Scholar | Crossref | Medline36. Vlachos, IS, Paraskevopoulou, MD, Karagkouni, D, et al. DIANA-TarBase v7.0: indexing more than half a million experimentally supported miRNA:mRNA interactions. Nucleic Acids Res. 2015;43:D153-D159.
Google Scholar | Crossref37. Chou, CH, Shrestha, S, Yang, CD, et al. 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res. 2018;46:D296-D302.
Google Scholar | Crossref38. Xiao, F, Zuo, Z, Cai, G, Kang, S, Gao, X, Li, T. miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res. 2009;37:D105-D110.
Google Scholar | Crossref39. Jiang, Q, Wang, Y, Hao, Y, et al. miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res. 2009;37:D98-D104.
Google Scholar | Crossref40. Huang, Z, Shi, J, Gao, Y, et al. HMDD v3.0: a database for experimentally supported human microRNA-disease associations. Nucleic Acids Res. 2019;47:D1013-D1017.
Google Scholar | Crossref41. Ruepp, A, Kowarsch, A, Schmidl, D, et al. PhenomiR: a knowledgebase for microRNA expression in diseases and biological processes. Genome Biol. 2010;11:R6.
Google Scholar | Crossref | Medline42. Liu, X, Wang, S, Meng, F, et al. SM2miR: a database of the experimentally validated small molecules’ effects on microRNA expression. Bioinformatics. 2013;29:409-411.
Google Scholar | Crossref | Medline43. Rukov, JL, Wilentzik, R, Jaffe, I, Vinther, J, Shomron, N. Pharmaco-miR: linking microRNAs and drug effects. Brief Bioinform. 2014;15:648-659.
Google Scholar | Crossref | Medline44. Dai, E, Yu, X, Zhang, Y, et al. EpimiR: a database of curated mutual regulation between miRNAs and epigenetic modifications. Database (Oxford). 2014;2014:bau023.
Google Scholar | Crossref45. Li, JH, Liu, S, Zhou, H, Qu, LH, Yang, JH. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42:D92-D97.
Google Scholar | Crossref46. Zhou, G, Soufan, O, Ewald, J, Hancock, REW, Basu, N, Xia, J. NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res. 2019;47: W234-W241.
Google Scholar | Crossref47. Khan, A, Fornes, O, Stigliani, A, et al. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 2018;46:D260-D266.
Google Scholar | Crossref48. Robin, X, Turck, N, Hainard, A, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77.
Google Scholar | Crossref | Medline | ISI49. Aleissa, MM, Silverman, EA, Paredes Acosta, LM, Nutt, CT, Richterman, A, Marty, FM. New perspectives on antimicrobial agents: remdesivir treatment for COVID-19. Antimicrob Agents Chemother. 2020;65:e01814-e01820.
Google Scholar | Crossref | Medline50. Ciancanelli, MJ, Huang, SX, Luthra, P, et al. Infectious disease. Life-threatening influenza and impaired interferon amplification in human IRF7 deficiency. Science. 2015;348:448-453.
Google Scholar | Crossref | Medline51. Jin, HK, Yoshimatsu, K, Takada, A, et al. Mouse Mx2 protein inhibits hantavirus but not influenza virus replication. Arch Virol. 2001;146:41-49.
Google Scholar | Crossref | Medline | ISI52. Koliopoulos, MG, Lethier, M, van der Veen, AG, et al. Molecular mechanism of influenza A NS1-mediated TRIM25 recognition and inhibition. Nat Commun. 2018;9:1820.
Google Scholar | Crossref | Medline53. Wu, X, Wang, J, Wang, S, et al. Inhibition of influenza A virus replication by TRIM14 via its multifaceted protein-protein interaction with NP. Front Microbiol. 2019;10:344.
Google Scholar | Crossref | Medline54. Rohaim, MA, Santhakumar, D, Naggar, RFE, Iqbal, M, Hussein, HA, Munir, M. Chickens expressing IFIT5 ameliorate clinical outcome and pathology of highly pathogenic avian influenza and velogenic newcastle disease viruses. Front Immunol. 2018;9:2025.
Google Scholar | Crossref | Medline55. Feng, B, Zhang, Q, Wang, J, et al. IFIT1 expression patterns induced by H9N2 virus and inactivated viral particle in human umbilical vein endothelial cells and bronchus epithelial cells. Mol Cells. 2018;41:271-281.
Google Scholar | Medline

留言 (0)

沒有登入
gif