In Silico Investigation of Conserved miRNAs and Their Targets From the Expressed Sequence Tags in Neospora Caninum Genome

1. Reichel, MP, Alejandra Ayanegui-Alcérreca, M, Gondim, LF, Ellis, JT. What is the global economic impact of Neospora caninum in cattle—the billion dollar question. Int J Parasitol. 2013;43:133-142. doi:10.1016/j.ijpara.2012.10.022.
Google Scholar | Crossref | Medline2. Trees, AJ, Davison, HC, Innes, EA, Wastling, JM. Towards evaluating the economic impact of bovine neosporosis. Int J Parasitol. 1999;29:1195-1200. doi:10.1016/S0020-7519(99)00093-4.
Google Scholar | Crossref | Medline3. Derdour, S-Y, Hafsi, F, Azzag, N, et al. Prevalence of the main infectious causes of abortion in dairy cattle in Algeria. J Vet Res. 2017;61:337-343. doi:10.1515/jvetres-2017-0044.
Google Scholar | Crossref | Medline4. Dubey, JP. Review of Neospora caninum and neosporosis in animals. Korean J Parasitol. 2003;41:1-16.
Google Scholar | Crossref | Medline5. Woodbine, KA, Medley, GF, Moore, SJ, Ramirez-Villaescusa, A, Mason, S, Green, LE. A four year longitudinal sero-epidemiology study of Neospora caninum in adult cattle from 114 cattle herds in south west England: associations with age, herd and dam-offspring pairs. BMC Vet Res. 2008;4:35. doi:10.1186/1746-6148-4-35.
Google Scholar | Crossref | Medline6. Marugan-Hernandez, V. Neospora caninum and Bovine Neosporosis: current vaccine research. J Comp Pathol. 2017;157:193-200. doi:10.1016/j.jcpa.2017.08.001.
Google Scholar | Crossref | Medline7. Sánchez-Sánchez, R, Vázquez, P, Ferre, I, Ortega-Mora, LM. Treatment of toxoplasmosis and neosporosis in farm ruminants: state of knowledge and future trends. Curr Top Med Chem. 2018;18:1304-1323.
Google Scholar | Crossref | Medline8. Aravin, AA, Lagos-Quintana, M, Yalcin, A, et al. The small RNA profile during Drosophila melanogaster development. Dev Cell. 2003;5:337-350. doi:10.1016/S1534-5807(03)00228-4.
Google Scholar | Crossref | Medline9. Bentwich, I, Avniel, A, Karov, Y, et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet. 2005;37:766-770. doi:10.1038/ng1590.
Google Scholar | Crossref | Medline | ISI10. Zhao, Y, Srivastava, D. A developmental view of microRNA function. Trends Biochem Sci. 2007;32:189-197. doi:10.1016/j.tibs.2007.02.006.
Google Scholar | Crossref | Medline11. Sengar, GS, Deb, R, Singh, U, et al. Differential expression of microRNAs associated with thermal stress in Frieswal (Bos taurus x Bos indicus) crossbred dairy cattle. Cell Stress Chaperones. 2018;23:155-170.
Google Scholar | Crossref | Medline12. Szweykowska-Kulinska, Z, Jarmolowski, A. Post-transcriptional regulation of MicroRNA accumulation and function: new insights from plants. Mol Plant. 2018;11:1006-1007.
Google Scholar | Crossref | Medline13. Bartel, DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215-233.
Google Scholar | Crossref | Medline | ISI14. Tiwari, N, Kumar, V, Gedda, MR, et al. Identification and characterization of miRNAs in response to Leishmania donovani infection: delineation of their roles in macrophage dysfunction. Front Microbiol. 2017;8:314. doi:10.3389/fmicb.2017.00314.
Google Scholar | Crossref15. Al-Qassab, S, Reichel, MP, Ellis, J. A second generation multiplex PCR for typing strains of Neospora caninum using six DNA targets. Mol Cell Probes. 2010;24:20-26. doi:10.1016/j.mcp.2009.08.002.
Google Scholar | Crossref | Medline16. Reid, AJ, Vermont, SJ, Cotton, JA, et al. Comparative genomics of the apicomplexan parasites Toxoplasma gondii and Neospora caninum: Coccidia differing in host range and transmission strategy. PLoS Pathog. 2012;8:e1002567. doi:10.1371/journal.ppat.1002567.
Google Scholar | Crossref | Medline17. Ellis, J, Luton, K, Baverstock, PR, Brindley, PJ, Nimmo, KA, Johnson, AM. The phylogeny of Neospora caninum. Mol Biochem Parasitol. 1994;64:303-311. doi:10.1016/0166-6851(94)00033-6.
Google Scholar | Crossref | Medline | ISI18. Schock, A, Innes, EA, Yamane, I, Latham, SM, Wastling, JM. Genetic and biological diversity among isolates of Neospora caninum. Parasitology. 2001;123:13-23. doi:10.1017/S003118200100796X.
Google Scholar | Crossref | Medline19. Zheng, Y, Cai, X, Bradley, JE. microRNAs in parasites and parasite infection. RNA Biol. 2013;10:371-379. doi:10.4161/rna.23716.
Google Scholar | Crossref | Medline20. Kozomara, A, Birgaoanu, M, Griffiths-Jones, S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019;47:D155-D162. doi:10.1093/nar/gky1141.
Google Scholar | Crossref | Medline21. Altschul, SF, Madden, TL, Schäffer, AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389-3402. doi:10.1093/nar/25.17.3389.
Google Scholar | Crossref | Medline | ISI22. Fu, X, Zhu, W, Cai, L, et al. Improved pre-miRNAs identification through mutual information of pre-miRNA sequences and structures. Front Genet. 2019;10:119. doi:10.3389/fgene.2019.00119.
Google Scholar | Crossref | Medline23. Akter, A, Islam, MdM, Mondal, SI, et al. Computational identification of miRNA and targets from expressed sequence tags of coffee (Coffea arabica). Saudi J Biol Sci. 2014;21:3-12. doi:10.1016/j.sjbs.2013.04.007.
Google Scholar | Crossref | Medline24. Singh, N, Srivastava, S, Sharma, A. Identification and analysis of miRNAs and their targets in ginger using bioinformatics approach. Gene. 2016;575:570-576.
Google Scholar | Crossref | Medline25. Prakash, P, Ghosliya, D, Gupta, V. Identification of conserved and novel microRNAs in Catharanthus roseus by deep sequencing and computational prediction of their potential targets. Gene. 2015;554:181-195.
Google Scholar | Crossref | Medline26. Gao, D, Middleton, R, Rasko, JEJ, Ritchie, W. miREval 2.0: a web tool for simple microRNA prediction in genome sequences. Bioinformatics. 2013;29:3225-3226. doi:10.1093/bioinformatics/btt545.
Google Scholar | Crossref | Medline27. Reeder, J, Höchsmann, M, Rehmsmeier, M, Voss, B, Giegerich, R. Beyond Mfold: recent advances in RNA bioinformatics. J Biotechnol. 2006;124:41-55. doi:10.1016/j.jbiotec.2006.01.034.
Google Scholar | Crossref | Medline28. Wiese, KC, Hendriks, A. Comparison of P-RnaPredict and mfold—algorithms for RNA secondary structure prediction. Bioinformatics. 2006;22:934-942. doi:10.1093/bioinformatics/btl043.
Google Scholar | Crossref | Medline29. Zhang, BH, Pan, XP, Cox, SB, Cobb, GP, Anderson, TA. Evidence that miRNAs are different from other RNAs. Cell Mol Life Sci. 2006;63:246-254.
Google Scholar | Crossref | Medline | ISI30. Griffiths-Jones, S, Grocock, RJ, Van Dongen, S, Bateman, A, Enright, AJ. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006;34:D140-D144.
Google Scholar | Crossref | Medline | ISI31. Thompson, JD, Gibson, TJ, Higgins, DG. Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics. 2003;2:Unit 2.3.
Google Scholar | Medline32. Agarwal, V, Subtelny, AO, Thiru, P, Ulitsky, I, Bartel, DP. Predicting microRNA targeting efficacy in Drosophila. Genome Biol. 2018;19:152. doi:10.1186/s13059-018-1504-3.
Google Scholar | Crossref33. Kaletta, T, Hengartner, MO. Finding function in novel targets: C. elegans as a model organism. Nat Rev Drug Discov. 2006;5:387-398. doi:10.1038/nrd2031.
Google Scholar | Crossref | Medline | ISI34. Roberts, DB. Drosophila melanogaster: the model organism. Entomol Exp Appl. 2006;121:93-103. doi:10.1111/j.1570-8703.2006.00474.x.
Google Scholar | Crossref35. Mueller, GM. Biodiversity of Fungi: Inventory and Monitoring Methods. Amsterdam, The Netherlands: Elsevier; 2011.
Google Scholar36. Jike, W, Sablok, G, Bertorelle, G, Li, M, Varotto, C. In silico identification and characterization of a diverse subset of conserved microRNAs in bioenergy crop Arundo donax L. Sci Rep. 2018;8:16667.
Google Scholar | Crossref | Medline37. Loong, SNK, Mishra, SK. Unique folding of precursor microRNAs: quantitative evidence and implications for de novo identification. RNA. 2007;13:170-187. doi:10.1261/rna.223807.
Google Scholar | Crossref | Medline38. Zuker, M, Stiegler, P. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 1981;9:133-148.
Google Scholar | Crossref | Medline39. Schuster, P, Fontana, W, Stadler, PF, Hofacker, IL. From sequences to shapes and back: a case study in RNA secondary structures. Proc Biol Sci. 1994;255:279-284.
Google Scholar | Crossref | Medline | ISI40. Bonnet, E, Wuyts, J, Rouze, P, Van de Peer, Y. Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences. Bioinformatics. 2004;20:2911-2917. doi:10.1093/bioinformatics/bth374.
Google Scholar | Crossref | Medline | ISI41. Harfe, BD. MicroRNAs in vertebrate development. Curr Opin Genet Dev. 2005;15:410-415. doi:10.1016/j.gde.2005.06.012.
Google Scholar | Crossref | Medline | ISI42. Zhang, B, Wang, Q, Pan, X. MicroRNAs and their regulatory roles in animals and plants. J Cell Physiol. 2007;210:279-289.
Google Scholar | Crossref | Medline | ISI43. Johnston, RJ, Hobert, O. A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature. 2003;426:845-849. doi:10.1038/nature02255.
Google Scholar | Crossref | Medline44. Reinhart, BJ, Slack, FJ, Basson, M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403:901-906. doi:10.1038/35002607.
Google Scholar | Crossref | Medline | ISI45. Hakimi, M, Cannella, D. Apicomplexan parasites and subversion of the host cell microRNA pathway. Trends Parasitol. 2011;27:481-486. doi:10.1016/j.pt.2011.07.001.
Google Scholar | Crossref | Medline46. Gaidatzis, D, van Nimwegen, E, Hausser, J, Zavolan, M. Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinformatics. 2007;8:69. doi:10.1186/1471-2105-8-69.
Google Scholar | Crossref | Medline47. Dahiya, N, Sherman-Baust, CA, Wang, T-L, et al. MicroRNA expression and identificat

留言 (0)

沒有登入
gif