1.
Azamjah, N, Soltan-Zadeh, Y, Zayeri, F. Global trend of breast cancer mortality rate: a 25-year study. Asian Pac J Cancer Prev. 2019;20:2015-2020. doi:
10.31557/APJCP.2019.20.7.2015.
Google Scholar |
Crossref |
Medline2.
Furtunescu, F, Bohiltea, RE, Voinea, S, et al. Breast cancer mortality gaps in Romanian women compared to the EU after 10 years of accession: is breast cancer screening a priority for action in Romania? (Review of the Statistics). Exp Ther Med. 2021;21:268. doi:
10.3892/etm.2021.9699.
Google Scholar |
Crossref |
Medline3.
Bray, F, Ferlay, J, Soerjomataram, I, Siegel, RL, Torre, LA, Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394-424. doi:
10.3322/caac.21492.
Google Scholar |
Crossref |
Medline4.
Waks, AG, Winer, EP. Breast cancer treatment: a review. JAMA. 2019;321:288-300. doi:
10.1001/jama.2018.19323.
Google Scholar |
Crossref |
Medline5.
Alshammari, FD . Breast cancer genetic susceptibility: with focus in Saudi Arabia. J Oncol Sci. 2019;5:6-12. doi:
10.1016/j.jons.2019.02.001.
Google Scholar |
Crossref6.
McKinney, SM, Sieniek, M, Godbole, V, et al. International evaluation of an AI system for breast cancer screening. Nature. 2020;577:89-94. doi:
10.1038/s41586-019-1799-6.
Google Scholar |
Crossref |
Medline7.
Global Burden of Disease Cancer Collaboration , Fitzmaurice, C, Allen, C, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. JAMA Oncol. 2017;3:524-548. doi:
10.1001/jamaoncol.2016.5688.
Google Scholar |
Crossref |
Medline |
ISI8.
Siegel, R, Naishadham, D, Jemal, A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11-30. doi:
10.3322/caac.21166.
Google Scholar |
Crossref |
Medline |
ISI9.
Barman, UD, Saha, SK, Kader, MA, et al. Clinicopathological and prognostic significance of GPC3 in human breast cancer and its 3D structure prediction. Netw Model Anal Health Inform Bioinform. 2020;9:1-18. doi:
10.1007/s13721-020-00234-x.
Google Scholar |
Crossref10.
Cui, X, Yi, Q, Jing, X, et al. Mining prognostic significance of MEG3 in human breast cancer using bioinformatics analysis. Cell Physiol Biochem. 2018;50:41-51. doi:
10.1159/000493956.
Google Scholar |
Crossref |
Medline11.
Silvestri, V, Rizzolo, P, Zelli, V, et al. A possible role of FANCM mutations in male breast cancer susceptibility: results from a multicenter study in Italy. Breast. 2018;38:92-97. doi:
10.1016/j.breast.2017.12.013.
Google Scholar |
Crossref |
Medline12.
Di Francia, R, Atripaldi, L, Di Martino, S, et al. Assessment of pharmacogenomic panel assay for prediction of taxane toxicities: preliminary results. Front Pharmacol. 2017;8:797. doi:
10.3389/fphar.2017.00797.
Google Scholar |
Crossref |
Medline13.
Szymiczek, A, Lone, A, Akbari, MR. Molecular intrinsic versus clinical subtyping in breast cancer: a comprehensive review. Clin Genet. 2021;99:613-637. doi:
10.1111/cge.13900.
Google Scholar |
Crossref |
Medline14.
Merdad, A, Gari, MA, Hussein, S, et al. Characterization of familial breast cancer in Saudi Arabia. BMC Genomics. 2015;16:S3. doi:
10.1186/1471-2164-16-S1-S3.
Google Scholar |
Crossref15.
Wang, Y, Li, Y, Liu, B, Song, A. Identifying breast cancer subtypes associated modules and biomarkers by integrated bioinformatics analysis. Biosci Rep. 2021;41:BSR20203200. doi:
10.1042/BSR20203200.
Google Scholar |
Crossref16.
Parsons, J, Francavilla, C. ‘Omics approaches to explore the breast cancer landscape. Front Cell Dev Biol. 2020;7:395. doi:
10.3389/fcell.2019.00395.
Google Scholar |
Crossref |
Medline17.
Bao, Y, Wang, L, Shi, L, et al. Transcriptome profiling revealed multiple genes and ECM-receptor interaction pathways that may be associated with breast cancer. Cell Mol Biol Lett. 2019;24:38. doi:
10.1186/s11658-019-0162-0.
Google Scholar |
Crossref |
Medline18.
Fang, H, Cavaliere, A, Li, Z, Huang, Y, Marquez-Nostra, B. Preclinical advances in theranostics for the different molecular subtypes of breast cancer. Front Pharmacol. 2021;12:627693. doi:
10.3389/fphar.2021.627693.
Google Scholar |
Crossref |
Medline19.
Sheikh, A, Hussain, SA, Ghori, Q, et al. The spectrum of genetic mutations in breast cancer. Asian Pac J Cancer Prev. 2015;16:2177-2185. doi:
10.7314/apjcp.2015.16.6.2177.
Google Scholar |
Crossref |
Medline20.
Sato, K, Koyasu, M, Nomura, S, et al. Mutation status of RAD51C, PALB2 and BRIP1 in 100 Japanese familial breast cancer cases without BRCA1 and BRCA2 mutations. Cancer Sci. 2017;108:2287-2294. doi:
10.1111/cas.13350.
Google Scholar |
Crossref |
Medline21.
Ouhtit, A, Gupta, I, Shaikh, Z. BRIP1, a potential candidate gene in development of non-BRCA1/2 breast cancer. Front Biosci (Elite Ed). 2016;8:289-298.
Google Scholar |
Crossref |
Medline22.
Li, X, Li, Z, Yang, M, et al. Two tSNPs in BRIP1 are associated with breast cancer during TDT analysis. Mol Genet Genomic Med. 2021;9:e1578. doi:
10.1002/mgg3.1578.
Google Scholar |
Crossref23.
Vickers, NJ . Animal communication: when I’m calling you, will you answer too? Curr Biol. 2017;27:R713-R715. doi:
10.1016/j.cub.2017.05.064.
Google Scholar |
Crossref |
Medline24.
Pontikakis, S, Papadaki, C, Tzardi, M, et al. Predictive value of ATP7b, BRCA1, BRCA2, PARP1, UIMC1 (RAP80), HOXA9, DAXX, TXN (TRX1), THBS1 (TSP1) and PRR13 (TXR1) genes in patients with epithelial ovarian cancer who received platinum-taxane first-line therapy. Pharmacogenomics J. 2017;17:506-514. doi:
10.1038/tpj.2016.63.
Google Scholar |
Crossref |
Medline25.
Moes-Sosnowska, J, Rzepecka, IK, Chodzynska, J, et al. Clinical importance of FANCD2, BRIP1, BRCA1, BRCA2 and FANCF expression in ovarian carcinomas. Cancer Biol Ther. 2019;20:843-854. doi:
10.1080/15384047.2019.1579955.
Google Scholar |
Crossref |
Medline26.
Gupta, I, Ouhtit, A, Al-Ajmi, A, et al. BRIP1 overexpression is correlated with clinical features and survival outcome of luminal breast cancer subtypes. Endocr Connect. 2018;7:65-77. doi:
10.1530/EC-17-0173.
Google Scholar |
Crossref |
Medline27.
Rhodes, DR, Kalyana-Sundaram, S, Mahavisno, V, et al. Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia. 2007;9:166-180. doi:
10.1593/neo.07112.
Google Scholar |
Crossref |
Medline |
ISI28.
Tang, Z, Kang, B, Li, C, Chen, T, Zhang, Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47:W556-W560. doi:
10.1093/nar/gkz430.
Google Scholar |
Crossref |
Medline29.
Park, SJ, Yoon, BH, Kim, SK, Kim, SY. GENT2: an updated gene expression database for normal and tumor tissues. BMC Med Genomics. 2019;12:101. doi:
10.1186/s12920-019-0514-7.
Google Scholar |
Crossref |
Medline30.
Chandrashekar, DS, Bashel, B, Balasubramanya, SAH, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia. 2017;19:649-658. doi:
10.1016/j.neo.2017.05.002.
Google Scholar |
Crossref |
Medline31.
Uhlén, M, Fagerberg, L, Hallström, BM, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347:1260419. doi:
10.1126/science.1260419.
Google Scholar |
Crossref |
Medline |
ISI32.
Goldman, M, Craft, B, Zhu, J, et al. The UCSC Xena system for cancer genomics data visualization and interpretation. Cancer Res. 2017;77:2584. doi:
10.1158/1538-7445.AM2017-2584.
Google Scholar |
Crossref33.
Cerami, E, Gao, J, Dogrusoz, U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401-404. doi:
10.1158/2159-8290.CD-12-0095.
Google Scholar |
Crossref |
Medline |
ISI34.
Mizuno, H, Kitada, K, Nakai, K, Sarai, A. PrognoScan: a new database for meta-analysis of the prognostic value of genes. BMC Med Genomics. 2009;2:18. doi:
10.1186/1755-8794-2-18.
Google Scholar |
Crossref |
Medline |
ISI35.
Tu, Z, Aird, KM, Bitler, BG, et al. Oncogenic RAS regulates BRIP1 expression to induce dissociation of BRCA1 from chromatin, inhibit DNA repair, and promote senescence. Dev Cell. 2011;21:1077-1091. doi:
10.1016/j.devcel.2011.10.010.
Google Scholar |
Crossref |
Medline |
ISI36.
Zou, W, Ma, X, Hua, W, et al. BRIP1 inhibits the tumorigenic properties of cervical cancer by regulating RhoA GTPase activity. Oncol Lett. 2016;11:551-558. doi:
10.3892/ol.2015.3963.
Google Scholar |
Crossref |
Medline37.
Rafnar, T, Gudbjartsson, DF, Sulem, P, et al. Mutations in BRIP1 confer high risk of ovarian cancer. Nat Genet. 2011;43:1104-1107. doi:
10.1038/ng.955.
Google Scholar |
Crossref |
Medline |
ISI38.
Wong, MW, Nordfors, C, Mossman, D, et al. BRIP1, PALB2, and RAD51C mutation analysis reveals their relative importance as genetic susceptibility factors for breast cancer. Breast Cancer Res Treat. 2011;127:853-859. doi:
10.1007/s10549-011-1443-0.
Google Scholar |
Crossref |
Medline39.
Kote-Jarai, Z, Jugurnauth, S, Mulholland, S, et al. A recurrent truncating germline mutation in the BRIP1/FANCJ gene and susceptibility to prostate cancer. Br J Cancer. 2009;100:426-430. doi:
10.1038/sj.bjc.6604847.
Google Scholar |
Crossref |
Medline40.
Alvarez, A, Woolf, PJ. RegNetB: predicting relevant regulator-gene relationships in localized prostate tumor samples. BMC Bioinformatics. 2011;12:243. doi:
10.1186/1471-2105-12-243.
Google Scholar |
Crossref |
Medline41.
Liang, Y, Wu, H, Lei, R, et al. Transcriptional network analysis identifies BACH1 as a master regulator of breast cancer bone metastasis. J Biol Chem. 2012;287:33533-33544. doi:
10.1074/jbc.M112.392332.
Google Scholar |
Crossref |
Medline42.
Walerych, D, Napoli, M, Collavin, L, Del Sal, G. The rebel angel: mutant p53 as the driving oncogene in breast cancer. Carcinogenesis. 2012;33:2007-2017. doi:
10.1093/carcin/bgs232.
Google Scholar |
Crossref |
Medline43.
Eelen, G, Vanden Bempt, I, Verlinden, L, et al. Expression of the BRCA1-interacting protein Brip1/BACH1/FANCJ is driven by E2F and correlates with human breast cancer malignancy. Oncogene. 2008;27:4233-4241. doi:
10.1038/onc.2008.51.
Google Scholar |
Crossref |
Medline44.
Hickey, TE, Selth, LA, Chia, KM, et al. The androgen receptor is a tumor suppressor in estrogen receptor-positive breast cancer. Nat Med. 2021;27:310-320. doi:
10.1038/s41591-020-01168-7.
Google Scholar |
Crossref |
Medline45.
Farcas, AM, Nagarajan, S, Cosulich, S, Carroll, JS. Genome-wide estrogen receptor activity in
留言 (0)