1.
Ahram, M, Litou, ZI, Fang, R, Al-Tawallbeh, G. Estimation of membrane proteins in the human proteome. In Silico Biol. 2006;6:379-386.
Google Scholar |
Medline2.
Almén, MS, Nordström, KJV, Fredriksson, R, Schiöth, HB. Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin. BMC Biol. 2009;7:50. doi:
10.1186/1741-7007-7-50.
Google Scholar |
Crossref |
Medline |
ISI3.
Rosenbaum, DM, Rasmussen, SGF, Kobilka, BK. The structure and function of G-protein-coupled receptors. Nature. 2009;459:356-363. doi:
10.1038/nature08144.
Google Scholar |
Crossref |
Medline |
ISI4.
Nagarathnam, B, Kannan, S, Dharnidharka, V, Balakrishnan, V, Archunan, G, Sowdhamini, R. Insights from the analysis of conserved motifs and permitted amino acid exchanges in the human, the fly and the worm GPCR clusters. Bioinformation. 2011;7:15-20. doi:
10.6026/97320630007015.
Google Scholar |
Crossref |
Medline5.
Venkatakrishnan, AJ, Flock, T, Prado, DE, Oates, ME, Gough, J, Madan Babu, M. Structured and disordered facets of the GPCR fold. Curr Opin Struct Biol. 2014;27:129-137. doi:
10.1016/j.sbi.2014.08.002.
Google Scholar |
Crossref |
Medline6.
Fredriksson, R, Lagerström, MC, Lundin, LG, Schiöth, HB. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol. 2003;63:1256-1272. doi:
10.1124/mol.63.6.1256.
Google Scholar |
Crossref |
Medline |
ISI7.
Zhang, D, Zhao, Q, Wu, B. Structural studies of G protein-coupled receptors. Mol Cells. 2015;38:836-842. doi:
10.14348/molcells.2015.0263.
Google Scholar |
Crossref |
Medline8.
Schwartz, TW, Frimurer, TM, Holst, B, Rosenkilde, MM, Elling, CE. Molecular mechanism of 7TM receptor activation – a global toggle switch model. Annu Rev Pharmacol Toxicol. 2006;46:481-519. doi:
10.1146/annurev.pharmtox.46.120604.141218.
Google Scholar |
Crossref |
Medline9.
Chan, W, Zhang, Y. Virtual screening of human Class-A GPCRs using ligand profiles built on multiple ligand-receptor interactions. J Mol Biol. 2020;432:4872-4890
Google Scholar |
Crossref |
Medline10.
Wishart, DS, Feunang, YD, Guo, AC, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46:D1074-D1082. doi:
10.1093/nar/gkx1037.
Google Scholar |
Crossref |
Medline11.
Sriram, K, Insel, PA. G protein-coupled receptors as targets for approved drugs: how many targets and how many drugs? Mol Pharmacol. 2018;93:251-258. doi:
10.1124/mol.117.111062.
Google Scholar |
Crossref |
Medline12.
Heng, BC, Aubel, D, Fussenegger, M. An overview of the diverse roles of G-protein coupled receptors (GPCRs) in the pathophysiology of various human diseases. Biotechnol Adv. 2013;31:1676-1694. doi:
10.1016/j.biotechadv.2013.08.017.
Google Scholar |
Crossref |
Medline13.
Stoy, H, Gurevich, V. How genetic errors in GPCRs affect their function: possible therapeutic strategies. Genes Dis. 2015;2:108-132. doi:
10.1016/j.gendis.2015.02.005.
Google Scholar |
Crossref |
Medline14.
Conn, PJ, Christopoulos, A, Lindsley, CW. Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nat Rev Drug Discov. 2009;8:41-54. doi:
10.1038/nrd2760.
Google Scholar |
Crossref |
Medline |
ISI15.
Lindsley, CW, Emmitte, KA, Hopkins, CR, et al. Practical strategies and concepts in GPCR allosteric modulator discovery: recent advances with metabotropic glutamate receptors. Chem Rev. 2016;116:6707-6741. doi:
10.1021/acs.chemrev.5b00656.
Google Scholar |
Crossref |
Medline16.
Azam, S, Haque, ME, Jakaria, M, Jo, S-H, Kim, I-S, Choi, D-K. G-protein-coupled receptors in CNS: a potential therapeutic target for intervention in neurodegenerative disorders and associated cognitive deficits. Cells. 2020;9:506. doi:
10.3390/cells9020506.
Google Scholar |
Crossref17.
Morris, GM, Huey, R, Lindstrom, W, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30:2785-2791. doi:
10.1002/jcc.21256.
Google Scholar |
Crossref |
Medline |
ISI18.
Chan, WKB, Zhang, H, Yang, J, et al. GLASS: a comprehensive database for experimentally validated GPCR-ligand associations. Bioinformatics. 2015;31:3035-3042. doi:
10.1093/bioinformatics/btv302.
Google Scholar |
Crossref |
Medline19.
Berman, H, Henrick, K, Nakamura, H. Announcing the worldwide Protein Data Bank. Nat Struct Biol. 2003;10:980. doi:
10.1038/nsb1203-980.
Google Scholar |
Crossref |
Medline20.
Pándy-Szekeres, G, Munk, C, Tsonkov, TM, et al. GPCRdb in 2018: adding GPCR structure models and ligands. Nucleic Acids Res. 2018;46:D440-D446. doi:
10.1093/nar/gkx1109.
Google Scholar |
Crossref |
Medline21.
Kim, S, Chen, J, Cheng, T, et al. PubChem 2019 update: improved access to chemical data. Nucleic Acids Res. 2019;47:D1102-D1109. doi:
10.1093/nar/gky1033.
Google Scholar |
Crossref |
Medline22.
Backman, TWH, Cao, Y, Girke, T. ChemMine tools: an online service for analyzing and clustering small molecules. Nucleic Acids Res. 2011;39:W486-W491. doi:
10.1093/nar/gkr320.
Google Scholar |
Crossref |
Medline23.
O’Boyle, NM, Banck, M, James, CA, Morley, C, Vandermeersch, T, Hutchison, GR. Open Babel: an open chemical toolbox. J Cheminform. 2011;3:33. doi:
10.1186/1758-2946-3-33.
Google Scholar |
Crossref |
Medline |
ISI24.
Bowers, KJ, Chow, E, Xu, H, et al. Scalable algorithms for molecular dynamics simulations on commodity clusters. Paper presented at: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, SC’06; ; Tampa, FL. doi:
10.1145/1188455.1188544.
Google Scholar |
Crossref25.
Sastry, GM, Adzhigirey, M, Day, T, Annabhimoju, R, Sherman, W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des. 2013;27:221-234. doi:
10.1007/s10822-013-9644-8.
Google Scholar |
Crossref |
Medline26.
Lomize, MA, Pogozheva, ID, Joo, H, Mosberg, HI, Lomize, AL. OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 2012;40:D370-D376. doi:
10.1093/nar/gkr703.
Google Scholar |
Crossref |
Medline |
ISI27.
Mothay, D, Ramesh, KV. Binding site analysis of potential protease inhibitors of COVID-19 using AutoDock. Virusdisease. 2020;31:1-6. doi:
10.1007/s13337-020-00585-z.
Google Scholar |
Crossref |
Medline28.
Sultan, S, Singh, GKS, Ashraf, K, Ashraf, M. Molecular docking studies of enzyme inhibitors and cytotoxic chemical entities. In: Vlachakis, D , ed. Molecular Docking. London, England: IntechOpen; 2018:13-30. doi:
10.5772/intechopen.76891.
Google Scholar |
Crossref29.
Samant, M, Chadha, N, Tiwari, AK, Hasija, Y. In silico designing and analysis of inhibitors against target protein identified through host-pathogen protein interactions in malaria. Int J Med Chem. 2016;2016:2741038. doi:
10.1155/2016/2741038.
Google Scholar |
Crossref |
Medline30.
Gagic, Z, Ruzic, D, Djokovic, N, Djikic, T, Nikolic, K. In silico methods for design of kinase inhibitors as anticancer drugs. Front Chem. 2020;7:873. doi:
10.3389/fchem.2019.00873.
Google Scholar |
Crossref |
Medline31.
Azam, SS, Abbasi, SW. Molecular docking studies for the identification of novel melatoninergic inhibitors for acetylserotonin-O-methyltransferase using different docking routines. Theor Biol Med Model. 2013;10:63. doi:
10.1186/1742-4682-10-63.
Google Scholar |
Crossref |
Medline32.
Haouz, A, Vanheusden, V, Munier-Lehmann, H, et al. Enzymatic and structural analysis of inhibitors designed against Mycobacterium tuberculosis thymidylate kinase: new insights into the phosphoryl transfer mechanism. J Biol Chem. 2003;278:4963-4971. doi:
10.1074/jbc.M209630200.
Google Scholar |
Crossref |
Medline
留言 (0)