Implantation of bovine hydroxyapatite and secretome with different oxygen concentration may improve massive bone defect regeneration: An experimental study on animal model

1. Mahyudin, F, Rantam, FA. Regenerasi pada Massive Bone Defect dengan Bovine Hydroxyapatite sebagai Scaffold Mesenchymal Stem Cell. J Biosains Pascasarj. 2011;13(3):179–195.
Google Scholar2. Setyowardoyo, N . Influence of Low Oxygen Condition of Bone Marrow Mesenchymal Stem Cell. J Stem Cell Res Tissue Eng. 2018;2(1):121.
Google Scholar | Crossref3. Zeng, JH, Liu, SW, Xiong, L, et al. Scaffolds for the repair of bone defects in clinical studies: A systematic review. J Orthop Surg Res. 2018;13(1):1–14.
Google Scholar | Crossref | Medline4. Eliaz, N, Metoki, N. Calcium phosphate bioceramics: A review of their history, structure, properties, coating technologies and biomedical applications. Materials (Basel). 2017;10(4):184.
Google Scholar | Crossref5. Fernandez de Grado, G, Keller, L, Idoux-Gillet, Y, et al. Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management. J Tissue Eng. 2018;9:12.
Google Scholar | SAGE Journals6. Utomo, DN, Hernugrahanto, KD, Edward, M, et al. Combination of bone marrow aspirate, cancellous bone allograft, and platelet-rich plasma as an alternative solution to critical-sized diaphyseal bone defect: A case series. Int J Surg Case Rep. 2019;58:178–185.
Google Scholar | Crossref | Medline7. Watanabe, Y, Harada, N, Sato, K, et al. Stem cell therapy: Is there a future for reconstruction of large bone defects? Injury. 2016;47:S47–S51.
Google Scholar8. Yun, YR, Kim, HW, Jang, JH. The osteogenic differentiation effect of the FN type 10-peptide amphiphile on PCL fiber. Int J Mol Sci. 2018;19(1):27.
Google Scholar | Crossref9. Hu, L, Yin, C, Zhao, F, et al. Mesenchymal stem cells: Cell fate decision to osteoblast or adipocyte and application in osteoporosis treatment. Int J Mol Sci. 2018;19(2):49.
Google Scholar | Crossref10. Alizadeh-Osgouei, M, Li, Y, Wen, C. A comprehensive review of biodegradable synthetic polymer-ceramic composites and their manufacture for biomedical applications. Bioact Mater. 2019;4(1):22–36.
Google Scholar | Crossref | Medline11. Tajami, S, Tobita, M, Orbay, H, et al. Direct and indirect effects on bone regeneration of a combination of adipose-derived stem cells and platelet-rich plasma. Tissue Eng A. 2015;21(5–6):895–905.
Google Scholar | Crossref | Medline12. Khallaf, FG, Kehinde, EO, Mostafa, A. Growth factors and cytokines in patients with long bone fractures and associated spinal cord injury. J Orthop. 2016;13(2):69–75.
Google Scholar | Crossref | Medline13. Lambertini, E, Penolazzi, L, Angelozzi, M, et al. Hypoxia preconditioning of human MSCs: A direct evidence of HIF-1α and collagen type XV correlation. Cell Physiol Biochem. 2018;51(5):2237–2249.
Google Scholar | Crossref | Medline14. Bigot, N, Mouche, A, Preti, M, et al. Hypoxia Differentially Modulates the Genomic Stability of Clinical-Grade ADSCs and BM-MSCs in Long-Term Culture. Tissue-Specific Stem Cells. 2015;33:3608–3620.
Google Scholar | Crossref | Medline15. Grayson, WL, Zhao, F, Izadpanah, R, et al. Effect of Hypoxia on Human Mesenchymal Stem Cell Expansion and Plasticity in 3D Constructs. J Cell Physiol. 2006;207:331–339.
Google Scholar | Crossref | Medline | ISI16. Yoon, DS, Kim, YH, Jung, HS, et al. Importance of Sox2 in maintenance of cell proliferation and multipotency of mesenchymal stem cells in low-density culture. Cell Prolif. 2011;44(5):428–440.
Google Scholar | Crossref | Medline | ISI17. Durand, M, Collombet, JM, Frasca, S, et al. In Vivo Hypobaric Hypoxia Performed During the Remodeling Process Accelerates Bone Healing in Mice. Stem Cells Transl Med. 2014;3:958–968.
Google Scholar | Crossref | Medline18. Tsai, CC, Yew, TL, Yang, DC, et al. Benefit of Hypoxic Culture on Bone Marrow Multipotent Stroma Cells. Am J Blood Res. 2012;2(3):148–159.
Google Scholar | Medline19. Yu, X, Wan, Q, Ye, X, et al. Cellular hypoxia promotes osteogenic differentiation of mesenchymal stem cells and bone defect healing via STAT3 signaling. Cell Mol Biol Lett. 2019;24(1):1–17.
Google Scholar | Crossref | Medline20. Lee, JS, Park, JC, Kim, TW, et al. Human bone marrow stem cells cultured under hypoxic conditions present altered characteristics and enhanced in vivo tissue regeneration. Bone. 2015;78:34–45.
Google Scholar | Crossref | Medline | ISI21. Zakrzewski, W, Dobrzynski, M, Syzmonowicz, M, et al. Stem cells: past, present, and future. Stem Cell Res Ther. 2019;14:1–22.
Google Scholar22. Hsieh, IS, Yang, R, Sen, R, et al. Osteopontin upregulates the expression of glucose transporters in osteosarcoma cells. PLoS One. 2014;9(10):1–10.
Google Scholar | Crossref23. Wohlleben, G, Scherzad, A, Güttler, A, et al. Influence of hypoxia and irradiation on osteopontin expression in head and neck cancer and glioblastoma cell lines. Radiat Oncol. 2015;10(1):1–8.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif