Fabrication, characterization and evaluation of the efficacy of gelatin/hyaluronic acid microporous scaffolds suffused with aloe-vera in a rat burn model

1. Rowan, MP, Cancio, LC, Elster, EA, et al. Burn wound healing and treatment: review and advancements. Crit Care 2015; 19(1): 243. DOI: 10.1186/s13054-015-0961-2.
Google Scholar | Crossref | Medline2. Studer, NM, Driscoll, IR, Daly, IM, et al. Care of the burn casualty in the prolonged field care environment. J Spec Oper Med 2015; 15(3): 86–93, PMID: 26360361.
Google Scholar | Medline3. Atiyeh, BS, Hayek, SN. Management of war-related burn injuries: Lessons learned from recent ongoing conflicts providing exceptional care in unusual places. J Craniofac Surg 2010; 21(5): 1529–1537. DOI: 10.1097/SCS.0b013e3181f3ed9c.
Google Scholar | Crossref | Medline4. Murphy, SV, Atala, A. 3D bioprinting of tissues and organs. Nat Biotechnol 2014; 32(8): 773–785. DOI: 10.1038/nbt.2958.
Google Scholar | Crossref | Medline | ISI5. Yu, T, Guan, Y, Xie, X, et al. Improved thrombin hemostat using the cross-linked gelatin by microbial transglutaminase. Int J Pol Sci 2015; 2015: 985286. DOI: 10.1155/2015/985286.
Google Scholar | Crossref6. Mano, JF, Silva, GA, Azevedo, HS, et al. Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J Roy Soc Interf 2007; 4(17): 999–1030. DOI: 10.1098/rsif.2007.0220.
Google Scholar | Crossref | Medline | ISI7. Dainiak, MB, Allan, IU, Savina, IN, et al. Gelatin–fibrinogen cryogel dermal matrices for wound repair: preparation, optimisation and in vitro study. Biomaterials 2010; 31(1): 67–76. DOI: 10.1016/j.biomaterials.2009.09.029.
Google Scholar | Crossref | Medline8. Tan, H, Wu, J, Lao, L, et al. Gelatin/chitosan/hyaluronan scaffold integrated with PLGA microspheres for cartilage tissue engineering. Acta Biomater 2009; 5(1): 328–337. DOI: 10.1016/j.actbio.2008.07.030.
Google Scholar | Crossref | Medline9. Wu, S, Deng, L, Hsia, H, et al. Evaluation of gelatin-hyaluronic acid composite hydrogels for accelerating wound healing. J Biomater Appl 2017; 31(10): 1380–1390. DOI: 10.1177/0885328217702526.
Google Scholar | SAGE Journals | ISI10. Rahman, S, Carter, P, Bhattarai, N. Aloe vera for tissue engineering applications. J Funct Biomater 2017; 8(1): 6. DOI: 10.3390/jfb8010006.
Google Scholar | Crossref11. Pereira, GG, Santos-Oliveira, R, Albernaz, MS, et al. Microparticles of Aloe vera/vitamin E/chitosan: microscopic, a nuclear imaging and an in vivo test analysis for burn treatment. Eur J Pharm Biopharm 2014; 86(2): 292–300. DOI: 10.1016/j.ejpb.2013.10.011.
Google Scholar | Crossref | Medline12. Cuttle, L, Kempf, M, Kravchuk, O, et al. The efficacy of Aloe vera, tea tree oil and saliva as first aid treatment for partial thickness burn injuries. Burns 2008; 34(8): 1176–1182. DOI: 10.1016/j.burns.2008.03.012.
Google Scholar | Crossref | Medline13. Maenthaisong, R, Chaiyakunapruk, N, Niruntraporn, S, et al. The efficacy of aloe vera used for burn wound healing: a systematic review. Burns 2007; 33(6): 713–718. DOI: 10.1016/j.burns.2006.10.384.
Google Scholar | Crossref | Medline14. Wu, S, Deng, L, Hsia, H, et al. Evaluation of gelatin-hyaluronic acid composite hydrogels for accelerating wound healing. J Biomater Appl 2017; 31(10): 1380–1390. DOI: 10.1177/0885328217702526.
Google Scholar | SAGE Journals | ISI15. Autissier, A, Le Visage, C, Pouzet, C, et al. Fabrication of porous polysaccharide-based scaffolds using a combined freeze-drying/cross-linking process. Acta Biomater 2010; 6(9): 3640–3648. DOI: 10.1016/j.actbio.2010.03.004.
Google Scholar | Crossref | Medline16. de Lima, JM, Sarmento, RR, de Souza, JR, et al. Evaluation of hemagglutination activity of chitosan nanoparticles using human erythrocytes. Biomed Res Int 2015: 247965. DOI: 10.1155/2015/247965.PMID:25759815.
Google Scholar | Crossref | Medline17. Guan, S, Zhang, XL, Lin, XM, et al. Chitosan/gelatin porous scaffolds containing hyaluronic acid and heparan sulfate for neural tissue engineering. J Biomater Sci Polym Ed 2013; 24(8): 999–1014. DOI: 10.1080/09205063.2012.731374.
Google Scholar | Crossref | Medline18. Akhoondinasab, MR, Khodarahmi, A, Akhoondinasab, M, et al. Assessing effect of three herbal medicines in second and third degree burns in rats and comparison with silver sulfadiazine ointment. Burns 2015; 41(1): 125–131. DOI: 10.1016/j.burns.2014.04.001.
Google Scholar | Crossref | Medline19. Singh, T, Kumar, N, Soni, S, et al. A new method for radiolabeling of human immunoglobulin-G and its biological evaluation. J Pharm Bioallied Sci 2012; 4(4): 286–290. DOI: 10.4103/0975-7406.103245.
Google Scholar | Crossref | Medline20. Guo, R, Lan, Y, Xue, W, et al. Collagen-cellulose nanocrystal scaffolds containing curcumin-loaded microspheres on infected full-thickness burns repair. J Tissue Eng Regen Med 2017; 11(12): 3544–3555. DOI: 10.1002/term.2272.
Google Scholar | Crossref | Medline21. Jithendra, P, Rajam, AM, Kalaivani, T, et al. Preparation and characterization of aloe vera blended collagen-chitosan composite scaffold for tissue engineering applications. ACS App Mater Inter 2013; 5(15): 7291–7298. DOI: 10.1021/am401637c.
Google Scholar | Crossref | Medline22. Loh, QL, Choong, C. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng B Rev 2013; 19(6): 485–502. DOI: 10.1089/ten.TEB.2012.0437.
Google Scholar | Crossref | Medline23. Hollister, SJ . Porous scaffold design for tissue engineering. Nat Mater 2005; 4(7): 518–524. DOI: 10.1038/nmat1421.
Google Scholar | Crossref | Medline | ISI24. Kozlov, PV, Burdygina, GI. The structure and properties of solid gelatin and the principles of their modification. Polymer 1983; 24(6): 651–666. DOI: 10.1016/0032-3861(83)90001-0.
Google Scholar | Crossref25. Djabourov, M, Leblond, J, Papon, P. Gelation of aqueous gelatin solutions. I. Structural investigation. J de Physique 1988; 49(2): 319–332. DOI: 10.1051/jphys:01988004902031900.
Google Scholar | Crossref26. Zeltinger, J, Sherwood, JK, Graham, DA, et al. Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng 2001; 7(5): 557–572. DOI: 10.1089/107632701753213183.
Google Scholar | Crossref | Medline27. Kao, HH, Kuo, CY, Chen, KS, et al. Preparation of Gelatin and Gelatin/Hyaluronic Acid Cryogel Scaffolds for the 3D culture of mesothelial cells and mesothelium tissue regeneration. Int J Mol Sci 2019; 20(18): 4527. DOI: 10.3390/ijms20184527.
Google Scholar | Crossref28. Suner, SS, Demirci, S, Yetiskin, B, et al. Cryogel composites based on hyaluronic acid and halloysite nanotubes as scaffold for tissue engineering. Int J Biol Macromol 2019; 130: 627–635. DOI: 10.1016/j.ijbiomac.2019.03.025.
Google Scholar | Crossref | Medline29. Madaghiele, M, Salvatore, L, Sannino, A. Tailoring the pore structure of foam scaffolds for nerve regeneration. In: Netti, PA (ed) Biomedical foams for tissue engineering applications. Woodhead Publishing, 2014, pp. 1q01–28, DOI: 10.1533/9780857097033.1.101. (https://www.sciencedirect.com/science/article/pii/B9780857096968500048).
Google Scholar | Crossref30. Juweid, M, William Strauss, H, Yaoita, H, et al. Accumulation of immunoglobulin G at focal sites of inflammation. Eur J Nucl Med 1992; 19: 159–165, DOI: 10.1007/BF00173275.
Google Scholar | Crossref | Medline31. Fischman, AJ, Rubin, RH, White, JA, et al. Localization of Fc and Fab fragments of non-specific polyclonal IgG at focal sites of inflammation. J Nucl Med 1990; 31(7): 1199–1205, PMID: 2362199.
Google Scholar | Medline32. De Gersem, R, Jamar, F. Nonspecific human immunoglobulin G for imaging infection and inflammation: what did we learn? Q J Nucl Med Mol Imaging 2010; 54(6): 617–628, PMID: 21221069.
Google Scholar | Medline33. Blok, D, von Ogtrop, M, Arndt, JW, et al. Detection of inflammatory lesions with radiolabelled immunoglobulins. Eur J Nucl Med 1990; 16: 303–305, DOI: 10.1007/BF00842784.
Google Scholar | Crossref | Medline34. Mast, BA, Diegelmann, RF, Krummel, TM, et al. Hyaluronic acid modulates proliferation, collagen and protein synthesis of cultured fetal fibroblasts. Matrix 1993; 13(6): 441–446. DOI: 10.1016/s0934-8832(11)80110-1.
Google Scholar | Crossref | Medline35. Shaw, G, Lee-Barthel, A, Ross, ML, et al. Vitamin C–enriched gelatin supplementation before intermittent activity augments collagen synthesis. Am J Clin Nutr 2017; 105(1): 136–143. DOI: 10.3945/ajcn.116.138594.
Google Scholar | Crossref | Medline36. Cho, S, Lee, S, Lee, MJ, et al. Dietary Aloe vera supplementation improves facial wrinkles and elasticity and it increases the type I procollagen gene expression in human skin in vivo. Ann Dermatol 2009; 21(1): 6–11. DOI: 10.5021/ad.2009.21.1.6.
Google Scholar | Crossref | Medline37. Zhang, Z, Xiao, C, Gibson, AM, et al. EGFR signaling blunts allergen-induced IL-6 production and Th17 responses in the skin and attenuates development and relapse of atopic dermatitis. J Immunol 2014; 192(3): 859–866. DOI: 10.4049/jimmunol.1301062.
Google Scholar | Crossref | Medline | ISI38. Grazul-Bilska, AT, Johnson, ML, Bilski, JJ, et al. Wound healing: the role of growth factors. Drugs Today (Barc) 2003; 39(10): 787–800. DOI: 10.1358/dot.2003.39.10.799472.
Google Scholar | Crossref | Medline | ISI39. Okumura, K, Kiyohara, Y, Komada, F, et al. Improvement in wound healing by epidermal growth factor (EGF) ointment. I. Effect of nafamostat, gabexate, or gelatin on stabilization and efficacy of EGF. Pharm Res 1990; 7(12): 1289–1293. DOI: 10.1023/a:1015946123697.
Google Scholar | Crossref | Medline40. Shpichka, A, Butnaru, D, Bezrukov, EA, et al. Skin tissue regeneration for burn injury. Stem Cell Res Ther 2019; 10(1): 94. DOI: 10.1186/s13287-019-1203-3.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif