Clindamycin-loaded titanium prevents implant-related infection through blocking biofilm formation

1. Kurtz, SM, Lau, E, Schmier, J, et al. Infection burden for hip and knee arthroplasty in the United States. J Arthroplasty 2008; 23: 984–991, Journal Article. DOI: 10.1016/j.arth.2007.10.017.
Google Scholar | Crossref | Medline | ISI2. Metsemakers, W-J, Handojo, K, Reynders, P, et al. Individual risk factors for deep infection and compromised fracture healing after intramedullary nailing of tibial shaft fractures: a single centre experience of 480 patients. Injury 2015; 46: 740–745, Journal Article. DOI: 10.1016/j.injury.2014.12.018.
Google Scholar | Crossref | Medline | ISI3. Savage, VJ, Chopra, I, O’Neill, AJ. Staphylococcus aureus biofilms promote horizontal transfer of antibiotic resistance. Antimicrob Agents Chemother 2013; 57: 1968–1970, Journal Article. DOI: 10.1128/AAC.02008-12.
Google Scholar | Crossref | Medline4. Thurlow, LR, Hanke, ML, Fritz, T, et al. Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. J Immunol 2011; 186: 6585–6596, Journal Article; Research Support, N.I.H., Extramural. DOI: 10.4049/jimmunol.1002794.
Google Scholar | Crossref | Medline | ISI5. Wang, M, Tang, T. Surface treatment strategies to combat implant-related infection from the beginning. J Orthop Transl 2019; 17: 42–54, Journal Article; Review. DOI: 10.1016/j.jot.2018.09.001.
Google Scholar | Crossref | Medline6. Park, SJ, Kim, BS, Gupta, KC, et al. Hydroxyapatite nanorod-modified sand blasted titanium disk for endosseous dental implant applications. Tissue Eng Regen Med 2018; 15: 601–614, Journal Article. DOI: 10.1007/s13770-018-0151-9.
Google Scholar | Crossref | Medline7. Wagner, C, Hänsch, GM. Mechanisms of bacterial colonization of implants and host response. Adv Exp Med Biol 2016; 971: 15–27, Journal Article; Review. DOI: 10.1007/5584_2016_173.
Google Scholar | Crossref8. Alcheikh, A, Pavon-Djavid, G, Helary, G, et al. PolyNaSS grafting on titanium surfaces enhances osteoblast differentiation and inhibits staphylococcus aureus adhesion. J Mater Sci Mater Med 2013; 24: 1745–1754, Journal Article. DOI: 10.1007/s10856-013-4932-3.
Google Scholar | Crossref | Medline9. Cheng, YF, Zhang, JY, Wang, YB, et al. Deposition of catechol-functionalized chitosan and silver nanoparticles on biomedical titanium surfaces for antibacterial application. Mater Sci Eng C 2019; 98: 649–656, Journal Article. DOI: 10.1016/j.msec.2019.01.019.
Google Scholar | Crossref | Medline10. Chua, PH, Neoh, KG, Shi, Z, et al. Structural stability and bioapplicability assessment of hyaluronic acid-chitosan polyelectrolyte multilayers on titanium substrates evaluation study. J Biomed Mater Res A 2008; 87A: 1061–1074, Journal Article; Research Support, Non-U.S. Gov’t. DOI: 10.1002/jbm.a.31854.
Google Scholar | Crossref11. Jose, B, Antoci, V, Zeiger, AR, et al. Vancomycin covalently bonded to titanium beads kills staphylococcus aureus. Chem Biol 2005; 12: 1041–1048, Journal Article; Research Support, U.S. Gov’t, Non-P.H.S. DOI: 10.1016/j.chembiol.2005.06.013.
Google Scholar | Crossref | Medline12. Davidson, H, Poon, M, Saunders, R, et al. Tetracycline tethered to titanium inhibits colonization by gram-negative bacteria. J Biomed Mater Res B Appl Biomater 2015; 103: 1381–1389, Journal Article; Research Support, N.I.H., Extramural; Research Support, U.S. Gov’t, Non-P.H.S. DOI: 10.1002/jbm.b.33310.
Google Scholar | Crossref | Medline | ISI13. Chen, R, Willcox, MDP, Ho, KKK, et al. Antimicrobial peptide melimine coating for titanium and its in vivo antibacterial activity in rodent subcutaneous infection models. Biomaterials 2016; 85: 142–151, Journal Article. DOI: 10.1016/j.biomaterials.2016.01.063.
Google Scholar | Crossref | Medline14. Kucharíková, S, Gerits, E, De Brucker, K, et al. Covalent immobilization of antimicrobial agents on titanium prevents staphylococcus aureus and candida albicans colonization and biofilm formation. J Antimicrob Chemother 2016; 71: 936–945, Journal Article; Research Support, Non-U.S. Gov’t. DOI: 10.1093/jac/dkv437.
Google Scholar | Crossref | Medline15. Croes, M, Bakhshandeh, S, van Hengel, IAJ, et al. Antibacterial and immunogenic behavior of silver coatings on additively manufactured porous titanium. Acta Biomater 2018; 81: 315–327, Journal Article; Research Support, Non-U.S. Gov’t. DOI: 10.1016/j.actbio.2018.09.051.
Google Scholar | Crossref | Medline16. Mathews, S, Gupta, PK, Bhonde, R, et al. Chitosan enhances mineralization during osteoblast differentiation of human bone marrow-derived mesenchymal stem cells, by upregulating the associated genes. Cel Prolif 2011; 44: 537–549, Journal Article; Research Support, Non-U.S. Gov’t. DOI: 10.1111/j.1365-2184.2011.00788.x.
Google Scholar | Crossref | Medline17. Grohmann, S, Menne, M, Hesse, D, et al. Biomimetic multilayer coatings deliver gentamicin and reduce implant-related osteomyelitis in rats. Biomed Eng Biomed Tech 2019; 64: 383–395, Journal Article. DOI: 10.1515/bmt-2018-0044.
Google Scholar | Crossref | Medline18. Thabit, AK, Fatani, DF, Bamakhrama, MS, et al. Antibiotic penetration into bone and joints: an updated review. Int J Infect Dis 2019; 81: 128–136, Journal Article; Review. DOI: 10.1016/j.ijid.2019.02.005.
Google Scholar | Crossref | Medline19. Huang, Q, Yu, H-J, Liu, G-D, et al. Comparison of the effects of human β-defensin 3, vancomycin, and clindamycin on staphylococcus aureus biofilm formation. Orthopedics 2012; 35: e53–e60, Comparative Study; Journal Article; Research Support, Non-U.S. Gov’t. DOI: 10.3928/01477447-20111122-11.
Google Scholar | Crossref | Medline20. Hou, J-W, Qian, L, Kou, J-M, et al. Effect of water-soluble chitosan on the osteoblast function in MC3T3-E1 cells. Int J Biol Macromolecules 2015; 72: 1041–1043, Journal Article. DOI: 10.1016/j.ijbiomac.2014.10.012.
Google Scholar | Crossref | Medline21. Zhao, Y, Park, R-D, Muzzarelli, RAA. Chitin deacetylases: properties and applications. Mar Drugs 2010; 8: 24–46, Journal Article; Research Support, Non-U.S. Gov’t; Review. DOI: 10.3390/md8010024.
Google Scholar | Crossref | Medline22. Wieckiewicz, M, Boening, K, Grychowska, N, et al. Clinical application of chitosan in dental specialities. Mini Rev Med Chem 2017; 17: 401–409, Journal Article; Review. DOI: 10.2174/1389557516666160418123054.
Google Scholar | Crossref | Medline23. Poth, N, Seiffart, V, Gross, G, et al. Biodegradable chitosan nanoparticle coatings on titanium for the delivery of BMP-2. Biomolecules 2015; 5: 3–19, Journal Article; Research Support, Non-U.S. Gov’t. DOI: 10.3390/biom5010003.
Google Scholar | Crossref | Medline24. Sydow, S, Aniol, A, Hadler, C, et al. Chitosan-azide nanoparticle coating as a degradation barrier in multilayered polyelectrolyte drug delivery systems. Biomolecules 2019; 9: 573, Journal Article; Research Support, Non-U.S. Gov’t. DOI: 10.3390/biom9100573.
Google Scholar | Crossref25. Yang, S, Yin, Y, Xu, Y, et al. Covalent-driven layer-by-layer self-assembly of clindamycin-loaded PPLA nanoparticles/chitosan membrane on titanium sheet for long-acting anti-infection. Curr Nanosci 2020; 16: 1–7. DOI: 10.2174/1573413716999200917120155.
Google Scholar | Crossref26. Chu-Min Liu, CM, Yi-Kai Chen, YK, Tsung-Hsien Yang, TH, et al. High-performance liquid chromatographic determination of clindamycin in human plasma or serum: application to the bioequivalency study of clindamycin phosphate injections. J Chromatogr B: Biomed Sci Appl 1997; 696: 298–302, Clinical Trial; Journal Article; Randomized Controlled Trial. DOI: 10.1016/s0378-4347(97)00241-7.
Google Scholar | Crossref | Medline27. Drago, L, Clerici, P, Morelli, I, et al. The World Association against Infection in Orthopaedics and Trauma (WAIOT) procedures for microbiological sampling and Processing for Periprosthetic Joint Infections (PJIs) and other implant-related infections. J Clin Med 2019; 8: 933, Journal Article; Review. DOI: 10.3390/jcm8070933.
Google Scholar | Crossref28. Hegde, V, Park, HY, Dworsky, E, et al. The use of a novel antimicrobial implant coating in vivo to prevent spinal implant infection. Spine 2020; 45: E305–E311, Journal Article. DOI: 10.1097/BRS.0000000000003279.
Google Scholar | Crossref | Medline29. Arciola, CR, An, YH, Campoccia, D, et al. Etiology of implant orthopedic infections: a survey on 1027 clinical isolates. Int J Artif Organs 2005; 28: 1091–1100, Journal Article; Research Support, Non-U.S. Gov’t. DOI: 10.1177/039139880502801106.
Google Scholar | SAGE Journals | ISI30. Kunutsor, SK, Whitehouse, MR, Whitehouse, MR, et al. One- and two-stage surgical revision of peri-prosthetic joint infection of the hip: a pooled individual participant data analysis of 44 cohort studies. Eur J Epidemiol 2018; 33: 933–946, Journal Article; Meta-Analysis. DOI: 10.1007/s10654-018-0377-9.
Google Scholar | Crossref | Medline31. Chen, X, Wang, Z, Duan, N, et al. Osteoblast-osteoclast interactions. Connect Tissue Res 2018; 59: 99–107, Journal Article; Research Support, Non-U.S. Gov’t; Review. DOI: 10.1080/03008207.2017.1290085.
Google Scholar | Crossref | Medline32. Busscher, HJ, van der Mei, HC, Subbiahdoss, G, et al. Biomaterial-associated infection: locating the finish line in the race for the surface. Sci Transl Med 2012; 4: 153rv10, Journal Article; Review. DOI: 10.1126/scitranslmed.3004528.
Google Scholar | Crossref | Medline | ISI33. Tang, R-H, Yang, J, Fei, J. New perspectives on traumatic bone infections. Chin J Traumatol 2020; 23: 314–318, Journal Article; Review. DOI: 10.1016/j.cjtee.2020.05.009.
Google Scholar | Crossref | Medline34. Croes, M, Wal, BCH, Vogely, HC. Impact of bacterial infections on osteogenesis: evidence from in vivo studies. J Orthop Res 2019; 37: 2067–2076, Journal Article; Review. DOI: 10.1002/jor.24422.
Google Scholar | Crossref | Medline35. Chouirfa, H, Bouloussa, H, Migonney, V, et al. Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater 2019; 83: 37–54, Journal Article; Review. DOI: 10.1016/j.actbio.2018.10.036.
Google Scholar | Crossref | Medline36. Thierry, B, Winnik, FM, Merhi, Y, et al. Bioactive coatings of endovascular stents based on polyelectrolyte multilayers. Biomacromolecules 2003; 4: 1564–1571. DOI: 10.1021/bm0341834.
Google Scholar | Crossref | Medline | ISI37. Gristina, A . Biomaterial-centered infection: microbial adhesion versus tissue integration. Science 1987; 237: 1588–1595, Journal Article; Research Support, U.S. Gov’t, P.H.S. DOI: 10.1126/science.3629258.
Google Scholar | Crossref | Medline | ISI38. Krauss, JL, Roper, PM, Ballard, A, et al. Staphylococcus aureus infects osteoclasts and replicates intracellularly. mBio 2019; 10, Journal Article; Research Support, Non-U.S. Gov’t. DOI: 10.1128/mBio.02447-19.
Google Scholar | Crossref | Medline39. Campoccia, D, Testoni, F, Ravaioli, S, et al. Orthopedic implant infections: incompetence of staphylococcus epidermidis, staphylococcus lugdunensis, and enterococcus faecalisto invade osteoblasts. J Biomed Mater Res Part A 2016; 104: 788–801, Journal Article; Research Support, Non-U.S. Gov’t. DOI: 10.1002/jbm.a.35564.
Google Scholar | Crossref | Medline40. Trouillet-Assant, S, Gallet, M, Nauroy, P, et al. Dual impact of live staphylococcus aureus on the osteoclast lineage, leading to increased bone resorption. J Infect Dis 2015; 211: 571–581, Journal Article; Research Support, Non-U.S. Gov’t. DOI: 10.1093/infdis/jiu386.
Google Scholar | Crossref | Medline41. Kamohara, A, Hirata, H, Xu, X, et al. IgG immune complexes with staphylococcus aureus protein a enhance osteoclast differentiation and bone resorption by stimulating Fc receptors and TLR2. Int Immunol 2020; 32: 89–104, Journal Article; Research Support, Non-U.S. Gov’t. DOI: 10.1093/intimm/dxz063.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif