1.
Gentles, AJ, Plevritis, SK, Majeti, R, Alizadeh, AA. Association of a leukemic stem cell gene expression signature with clinical outcomes in acute myeloid leukemia. JAMA. 2010;304(24):2706–15.
Google Scholar |
Crossref2.
Eppert, K, Takenaka, K, Lechman, ER, Waldron, L, Nilsson, B, van Galen, P, Metzeler, KH, Poeppl, A, Ling, V, Beyene, J, Canty, AJ, Danska, JS, Bohlander, SK, Buske, C, Minden, MD, Golub, TR, Jurisica, I, Ebert, BL, Dick, JE. Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med. 2011;17(9):1086–93.
Google Scholar |
Crossref3.
Ng, SW, Mitchell, A, Kennedy, JA, Chen, WC, McLeod, J, Ibrahimova, N, Arruda, A, Popescu, A, Gupta, V, Schimmer, AD, Schuh, AC, Yee, KW, Bullinger, L, Herold, T, Görlich, D, Büchner, T, Hiddemann, W, Berdel, WE, Wörmann, B, Cheok, M, Preudhomme, C, Dombret, H, Metzeler, K, Buske, C, Löwenberg, B, Valk, PJ, Zandstra, PW, Minden, MD, Dick, JE, Wang, JC. A 17-gene stemness score for rapid determination of risk in acute leukaemia. Nature. 2016;540(7633):433–7.
Google Scholar |
Crossref4.
Shlush, LI, Zandi, S, Mitchell, A, Chen, WC, Brandwein, JM, Gupta, V, Kennedy, JA, Schimmer, AD, Schuh, AC, Yee, KW, McLeod, JL, Doedens, M, Medeiros, JJ, Marke, R, Kim, HJ, Lee, K, McPherson, JD, Hudson, TJ, Brown, AM, Yousif, F, Trinh, QM, Stein, LD, Minden, MD, Wang, JC, Dick, JE. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature. 2014;506(7488):328–33.
Google Scholar |
Crossref5.
Auffinger, B, Tobias, AL, Han, Y, Lee, G, Guo, D, Dey, M, Lesniak, MS, Ahmed, AU. Conversion of differentiated cancer cells into cancer stem-like cells in a glioblastoma model after primary chemotherapy. Cell Death Differ. 2014;21(7):1119–31.
Google Scholar |
Crossref6.
Chen, J, Li, Y, Yu, TS, McKay, RM, Burns, DK, Kernie, SG, Parada, LF. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature. 2012;488(7412):522–6.
Google Scholar |
Crossref7.
Murat, A, Migliavacca, E, Gorlia, T, Lambiv, WL, Shay, T, Hamou, MF, de Tribolet, N, Regli, L, Wick, W, Kouwenhoven, MC, Hainfellner, JA, Heppner, FL, Dietrich, PY, Zimmer, Y, Cairncross, JG, Janzer, RC, Domany, E, Delorenzi, M, Stupp, R, Hegi, ME. Stem cell-related “self-renewal” signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. J Clin Oncol. 2008;26(18):3015–24.
Google Scholar |
Crossref8.
Pallini, R, Ricci-Vitiani, L, Banna, GL, Signore, M, Lombardi, D, Todaro, M, Stassi, G, Martini, M, Maira, G, Larocca, LM, De Maria, R. Cancer stem cell analysis and clinical outcome in patients with glioblastoma multiforme. Clin Cancer Res. 2008;14(24):8205–12.
Google Scholar |
Crossref9.
Hira, VVV, Breznik, B, Vittori, M, Loncq de Jong, A, Mlakar, J, Oostra, RJ, Khurshed, M, Molenaar, RJ, Lah, T, Van Noorden, CJF. Similarities between stem cell niches in glioblastoma and bone marrow: rays of hope for novel treatment strategies. J Histochem Cytochem. 2020;68(1):33–57.
Google Scholar |
SAGE Journals10.
Hira, VVV, Van Noorden, CJF, Molenaar, RJ. CXCR4 antagonists as stem cell mobilizers and therapy sensitizers for acute myeloid leukemia and glioblastoma? Biology. 2020;9(2):31.
Google Scholar |
Crossref11.
Hira, VVV, Van Noorden, CJF, Carraway, HE, Maciejewski, JP, Molenaar, RJ. Novel therapeutic strategies to target leukemic cells that hijack compartmentalized continuous hematopoietic stem cell niches. Biochim Biophys Acta Rev Cancer. 2017;1868(1):183–98.
Google Scholar |
Crossref12.
Hira, VVV, Wormer, JR, Kakar, H, Breznik, B, van der Swaan, B, Hulsbos, R, Tigchelaar, W, Tonar, Tonar, Khurshed, M, Molenaar, RJ, Van Noorden, CJF. Periarteriolar glioblastoma stem cell niches express bone marrow hematopoietic stem cell niche proteins. J Histochem Cytochem. 2018;66(3):155–73.
Google Scholar |
SAGE Journals13.
Hira, VVV, Aderetti, DA, van Noorden, CJF. Glioma stem cell niches in human glioblastoma are periarteriolar. J Histochem Cytochem. 2018;66(5):349–58.
Google Scholar |
SAGE Journals14.
Hira, VV, Ploegmakers, KJ, Grevers, F, Verbovšek, U, Silvestre-Roig, C, Aronica, E, Tigchelaar, W, Turnšek, TL, Molenaar, RJ, Van Noorden, CJ. CD133+ and nestin+ glioma stem-like cells reside around CD31+ arterioles in niches that express SDF-1α, CXCR4, osteopontin and cathepsin K. J Histochem Cytochem. 2015;63(7):481–93.
Google Scholar |
SAGE Journals15.
Goffart, N, Lombard, A, Lallemand, F, Kroonen, J, Nassen, J, Di Valentin, E, Berendsen, S, Dedobbeleer, M, Willems, E, Robe, P, Bours, V, Martin, D, Martinive, P, Maquet, P, Rogister, B. CXCL12 mediates glioblastoma resistance to radiotherapy in the subventricular zone. Neuro Oncol. 2017;19(1):66–77.
Google Scholar |
Crossref16.
Arai, F, Hirao, A, Ohmura, M, Sato, H, Matsuoka, S, Takubo, K, Ito, K, Koh, GY, Suda, T. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell. 2004;118(2):149–61.
Google Scholar |
Crossref17.
Saharinen, P, Eklund, L, Miettinen, J, Wirkkala, R, Anisimov, A, Winderlich, M, Nottebaum, A, Vestweber, D, Deutsch, U, Koh, GY, Olsen, BR, Alitalo, K. Angiopoietins assemble distinct Tie2 signalling complexes in endothelial cell-cell and cell-matrix contacts. Nat Cell Biol. 2008;10(5):527–37.
Google Scholar |
Crossref18.
Brockman, AA, Mobley, BC, Ihrie, RA. Histological studies of the ventricular-subventricular zone as neural stem cell and glioma stem cell niche. J Histochem Cytochem. Epub 2021 Jul 26. doi:
10.1369/00221554211032003.
Google Scholar |
SAGE Journals19.
Hira, VVV, Molenaar, RJ, Breznik, B, Lah, T, Aronica, E, Van Noorden, CJF. Immunohistochemical detection of neural stem cells and glioblastoma stem cells in the subventricular zone of glioblastoma patients. J Histochem Cytochem. 2021;69:349–64.
Google Scholar |
SAGE Journals20.
Lee, JH, Lee, JE, Kahng, JY, Kim, SH, Park, JS, Yoon, SJ, Um, JY, Kim, WK, Lee, JK, Park, J, Kim, EH, Lee, JH, Lee, JH, Chung, WS, Ju, YS, Park, SH, Chang, JH, Kang, SG, Lee, JH. Human glioblastoma arises from subventricular zone cells with low-level driver mutations. Nature. 2018;560(7717):243–7.
Google Scholar |
Crossref21.
Sanai, N, Alvarez-Buylla, A, Berger, MS. Neural stem cells and the origin of gliomas. N Engl J Med. 2005;353(8):811–22.
Google Scholar |
Crossref22.
Qin, EY, Cooper, DD, Abbott, KL, Lennon, J, Nagaraja, S, Mackay, A, Jones, C, Vogel, H, Jackson, PK, Monje, M. Neural precursor-derived pleiotrophin mediates subventricular zone invasion by glioma. Cell. 2017;170(5):845–59.e19.
Google Scholar |
Crossref23.
Jambor, H, Antonietti, A, Alicea, B, Audisio, TL, Auer, S, Bhardwaj, V, Burgess, SJ, Ferling, I, Gazda, MA, Hoeppner, LH, Ilangovan, V, Lo, H, Olson, M, Mohamed, SY, Sarabipour, S, Varma, A, Walavalkar, K, Wissink, EM, Weissgerber, TL. Creating clear and informative image-based figures for scientific publications. PLoS Biol. 2021;19(3):e3001161.
Google Scholar |
Crossref24.
El Achi, H, Dupont, E, Paul, S, Khoury, JD. CD123 as a biomarker in hematolymphoid malignancies: principles of detection and targeted therapies. Cancers. 2020;12(11):3087.
Google Scholar |
Crossref25.
Testa, U, Castelli, G, Pelosi, E. Isocitrate dehydrogenase mutations in myelodysplastic syndromes and in acute myeloid leukemias. Cancers. 2020;12(9):2427.
Google Scholar |
Crossref26.
Panuzzo, C, Jovanovski, A, Pergolizzi, B, Pironi, L, Stanga, S, Fava, C, Cilloni, D. Mitochondria: a galaxy in the hematopoietic and leukemic stem cell universe. Int J Mol Sci. 2020;21(11):3928.
Google Scholar |
Crossref27.
van Noorden, CJF, Hira, VVV, van Dijck, AJ, Novak, M, Breznik, B, Molenaar, RJ. Energy metabolism in IDH1 wild-type and IDH1-mutated glioblastoma stem cells: a novel target for therapy? Cells. 2021;10(3):705.
Google Scholar |
Crossref28.
Molenaar, RJ, Radivoyevitch, T, Maciejewski, JP, van Noorden, CJ, Bleeker, FE. The driver and passenger effects of isocitrate dehydrogenase 1 and 2 mutations in oncogenesis and survival prolongation. Biochim Biophys Acta. 2014;1846(2):326–41.
Google Scholar29.
McCormack, RM, Zhu, P, Dono, A, Takayasu, T, Bhatia, A, Blanco, AI, Tandon, N, Ostrom, QT, Gonzales, A, Moreno, S, Ballester, LY, Esquenazi, Y. Role of ethnicity and geographic location on glioblastoma IDH1/IDH2 mutations. World Neurosurg. 2021;149:e894–912.
Google Scholar |
Crossref30.
Vaupel, P, Multhoff, G. Revisiting the Warburg effect: historical dogma versus current understanding. J Physiol. 2021;599(6):1745–57.
Google Scholar |
Crossref31.
Glancy, B, Kim, Y, Katti, P, Willingham, TB. The functional impact of mitochondrial structure across subcellular scales. Front Physiol. 2020;11:541040.
Google Scholar |
Crossref32.
Hackenbrock, CR . Ultrastructural bases for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria. J Cell Biol. 1966;30(2):269–97.
Google Scholar |
Crossref33.
Hackenbrock, CR . Ultrastructural bases for metabolically linked mechanical activity in mitochondria. II. Electron transport-linked ultrastructural transformations in mitochondria. J Cell Biol. 1968;37(2):345–69.
Google Scholar |
Crossref34.
Brandt, T, Mourier, A, Tain, LS, Partridge, L, Larsson, NG, Kühlbrandt, W. Changes of mitochondrial ultrastructure and function during ageing in mice and Drosophila. Elife. 2017;6:e24662.
Google Scholar |
Crossref35.
Zick, M, Rabl, R, Reichert, AS. Cristae formation-linking ultrastructure and function of mitochondria. Biochim Biophys Acta. 2009;1793(1):5–19.
Google Scholar |
Crossref36.
Paumard, P, Vaillier, J, Coulary, B, Schaeffer, J, Soubannier, V, Mueller, DM, Brèthes, D, di Rago, JP, Velours, J. The ATP synthase is involved in generating mitochondrial cristae morphology. Embo J. 2002;21(3):221–30.
Google Scholar |
Crossref37.
Davies, KM, Anselmi, C, Wittig, I, Faraldo-Gómez, JD, Kühlbrandt, W. Structure of the yeast F1F0-ATP synthase dimer and its role in shaping the mitochondrial cristae. Proc Natl Acad Sci USA. 2012;109(34):13602–7.
Google Scholar |
Crossref38.
Davies, KM, Strauss, M, Daum, B, Kief, JH, Osiewacz, HD, Rycovska, A, Zickermann, V, Kühlbrandt, W. Macromolecular organization of ATP synthase and complex I in whole mitochondria. Proc Natl Acad Sci USA. 2011;108(34):14121–6.
Google Scholar |
Crossref39.
Baum, T, Gama, V. Dynamic properties of mitochondria during human corticogenesis. Development. 2021;148(4):dev194183.
Google Scholar |
Crossref40.
Iwata, R, Vanderhaeghen, P. Regulatory roles of mitochondria and metabolism in neurogenesis. Curr Opin Neurobiol. 2021;69:231–40.
Google Scholar |
Crossref41.
Vallejo, FA, Shah, SS, de Cordoba, N, Walters, WM, Prince, J, Khatib, Z, Komotar, RJ, Vanni, S, Graham, RM. The contribution of ketone bodies to glycolytic inhibition for the treatment of adult and pediatric glioblastoma. J Neurooncol. 2020;147(2):317–26.
Google Scholar |
Crossref42.
Van Noorden, CJ, Frederiks, WM. Cerium methods for light and electron microscopical histochemistry. J Microsc. 1993;171(Pt 1):3–16.
Google Scholar |
Crossref43.
Rusu, P, Shao, C, Neuerburg, A, Acikgöz, AA, Wu, Y, Zou, P, Phapale, P, Shankar, TS, Döring, K, Dettling, S, Körkel-Qu, H, Bekki, G, Costa, B, Guo, T, Friesen, O, Schlotter, M, Heikenwalder, M, Tschaharganeh, DF, Bukau, B, Kramer, G, Angel, P, Herold-Mende, C, Radlwimmer, B, Liu, HK. GPD1 specifically marks dormant glioma stem cells with a distinct metabolic profile. Cell Stem Cell. 2019;25(2):241–57.e8.
Google Scholar |
Crossref44.
Bogataj, U, Mrak, P, Štrus, J, Žnidaršič, N. Ultrastructural differentiation of plasma membrane and cell junctions in the hindgut cells is synchronized with key developmental transitions in Porcellio scaber. Arthropod Struct Dev. 2019;50:78–93.
Google Scholar |
Crossref45.
Ward, PS, Thompson, CB. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell. 2012;21(3):297–308.
Google Scholar |
Crossref |
Medline46.
Duraj, T, García-Romero, N, Carrión-Navarro, J, Madurga, R, Mendivil, AO, Prat-Acin, R, Garcia-Cañamaque, L, Ayuso-Sacido, A. Beyond the Warburg effect: oxidative and glycolytic phenotypes coexist within the metabolic heterogeneity of glioblastoma. Cells. 2021;10(2):202.
Google Scholar |
Crossref47.
Koehler, A, Van Noorden, CJ. Reduced nicotinamide adenine dinucleotide phosphate and the higher incidence of pollution-induced liver cancer in female flounder. Environ Toxicol Chem. 2003;22(11):2703–10.
Google Scholar |
Crossref48.
Filippi, MD, Ghaffari, S. Mitochondria in the maintenance of hematopoietic stem cells: new perspectives and opportunities. Blood. 2019;133(18):1943–52.
Google Scholar |
Crossref49.
Nombela-Arrieta, C, Pivarnik, G, Winkel, B, Canty, KJ, Harley, B, Mahoney, JE, Park, SY, Lu, J, Protopopov, A, Silberstein, LE. Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat Cell Biol. 2013;15(5):533–43.
Google Scholar |
Crossref50.
Ito, K, Hirao, A, Arai, F, Takubo, K, Matsuoka, S, Miyamoto, K, Ohmura, M, Naka, K, Hosokawa, K, Ikeda, Y, Suda, T. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med. 2006;12(4):446–51.
Google Scholar |
Crossref51.
Miyamoto, K, Araki, KY, Naka, K, Arai, F, Takubo, K, Yamazaki, S, Matsuoka, S, Miyamoto, T, Ito, K, Ohmura, M, Chen, C, Hosokawa, K, Nakauchi, H, Nakayama, K, Nakayama, KI, Harada, M, Motoyama, N, Suda, T, Hirao, A. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell. 2007;1(1):101–12.
Google Scholar |
Crossref52.
Tesio, M, Golan, K, Corso, S, Giordano, S, Schajnovitz, A, Vagima, Y, Shivtiel, S, Kalinkovich, A, Caione, L, Gammaitoni, L, Laurenti, E, Buss, EC, Shezen, E, Itkin, T, Kollet, O, Petit, I, Trumpp, A, Christensen, J, Aglietta, M, Piacibello, W, Lapidot, T. Enhanced c-Met activity promotes G-CSF-induced mobilization of hematopoietic progenitor cells via ROS signaling. Blood. 2011;117(2):419–28.
Google Scholar |
Crossref53.
Golan, K, Vagima, Y, Ludin, A, Itkin, T, Cohen-Gur, S, Kalinkovich, A, Kollet, O, Kim, C, Schajnovitz, A, Ovadya, Y, Lapid, K, Shivtiel, S, Morris, AJ, Ratajczak, MZ, Lapidot, T. S1P promotes murine progenitor cell egress and mobilization via S1P1-mediated ROS signaling and SDF-1 release. Blood. 2012;119(11):2478–88.
Google Scholar |
留言 (0)