1. Batts, SA, Shoemaker, CR, Raphael, Y. Notch signaling and Hes labeling in the normal and drug-damaged organ of Corti. Hear Res 2009; 249(1–2): 15–22.
Google Scholar |
Crossref |
Medline2. Corwin, J, Cotanche, D. Regeneration of sensory hair cells after acoustic trauma. Science 1988; 240(4860): 1772–1774.
Google Scholar |
Crossref |
Medline3. Ryals, B, Rubel, E. Hair cell regeneration after acoustic trauma in adult Coturnix quail. Science 1988; 240(4860): 1774–1776.
Google Scholar |
Crossref |
Medline4. Koehler, KR, Hashino, E. 3D mouse embryonic stem cell culture for generating inner ear organoids. Nat Protoc 2014; 9(6): 1229–1244.
Google Scholar |
Crossref |
Medline5. Koehler, KR, Nie, J, Longworth-Mills, E, et al. Generation of inner ear organoids containing functional hair cells from human pluripotent stem cells. Nat Biotechnol 2017; 35(6): 583–589.
Google Scholar |
Crossref |
Medline6. Malgrange, B, Belachew, S, Thiry, M, et al. Proliferative generation of mammalian auditory hair cells in culture. Mech Dev 2002; 112(1–2): 79–88.
Google Scholar |
Crossref |
Medline7. Li, W, You, D, Chen, Y, et al. Regeneration of hair cells in the mammalian vestibular system. Front Med 2016; 10(2): 143–151.
Google Scholar |
Crossref |
Medline8. Oshima, K, Grimm, CM, Corrales, CE, et al. Differential distribution of stem cells in the auditory and vestibular organs of the inner ear. J Assoc Res Otolaryngol 2007; 8(1): 18–31.
Google Scholar |
Crossref |
Medline9. White, PM, Doetzlhofer, A, Lee, YS, et al. Mammalian cochlear supporting cells can divide and trans-differentiate into hair cells. Nature 2006; 441(7096): 984–987.
Google Scholar |
Crossref |
Medline10. Chai, R, Xia, A, Wang, T, et al. Dynamic expression of Lgr5, a Wnt target gene, in the developing and mature mouse cochlea. J Assoc Res Otolaryngol 2011; 12(4): 455–469.
Google Scholar |
Crossref |
Medline11. Cox, BC, Chai, R, Lenoir, A, et al. Spontaneous hair cell regeneration in the neonatal mouse cochlea in vivo. Development 2014; 141(7): 1599.
Google Scholar |
Crossref12. Lu, X, Sun, S, Qi, J, et al. Bmi1 regulates the proliferation of cochlear supporting cells via the canonical wnt signaling pathway. Mol Neurobiol 2017; 54(2): 1326–1339.
Google Scholar |
Crossref |
Medline13. Fischer, N, Johnson Chacko, L, Majerus, A, et al. Age-dependent calcium-binding protein expression in the spiral ganglion and hearing performance of C57BL/6J and 129/SvJ mice. ORL J Otorhinolaryngol Relat Spec 2019; 81(2–3): 138–154.
Google Scholar |
Crossref |
Medline14. Chen, Y, Lu, X, Guo, L, et al. Hedgehog signaling promotes the proliferation and subsequent hair cell formation of progenitor cells in the neonatal mouse cochlea. Front Mol Neurosci 2017; 10: 426.
Google Scholar |
Crossref |
Medline15. Collado-González, M, Pecci-Lloret, MP, García-Bernal, D, et al. Biological effects of silk fibroin 3D scaffolds on stem cells from human exfoliated deciduous teeth (SHEDs). Odontology 2018; 106(2): 125–134.
Google Scholar |
Crossref |
Medline16. Pecci-Lloret, MP, Vera-Sánchez, M, Aznar-Cervantes, S, et al. Analysis of the adherence of dental pulp stem cells on two-dimensional and three-dimensional silk fibroin-based biomaterials. J Craniofac Surg 2017; 28(4): 939–943.
Google Scholar |
Crossref |
Medline17. Altman, GH, Diaz, F, Jakuba, C, et al. Silk-based biomaterials. Biomaterials 2003; 24(3): 401–416.
Google Scholar |
Crossref |
Medline |
ISI18. Fan, S, Zhang, Y, Shao, H, et al. Electrospun regenerated silk fibroin mats with enhanced mechanical properties. Int J Biol Macromol 2013; 56: 83–88.
Google Scholar |
Crossref |
Medline19. Panilaitis, B, Altman, GH, Chen, J, et al. Macrophage responses to silk. Biomaterials 2003; 24(18): 3079–3085.
Google Scholar |
Crossref |
Medline |
ISI20. Meinel, L, Hofmann, S, Karageorgiou, V, et al. The inflammatory responses to silk films in vitro and in vivo. Biomaterials 2005; 26(2): 147–155.
Google Scholar |
Crossref |
Medline |
ISI21. Ki, CS, Park, SY, Kim, HJ, et al. Development of 3-D nanofibrous fibroin scaffold with high porosity by electrospinning: implications for bone regeneration. Biotechnol Lett 2008; 30(3): 405–410.
Google Scholar |
Crossref |
Medline22. Smith, LA, Ma, PX. Nano-fibrous scaffolds for tissue engineering. Colloids Surf B Biointerfaces 2004; 39(3): 125–131.
Google Scholar |
Crossref |
Medline |
ISI23. Bhardwaj, N, Nguyen, QT, Chen, AC, et al. Potential of 3-D tissue constructs engineered from bovine chondrocytes/silk fibroin-chitosan for in vitro cartilage tissue engineering. Biomaterials 2011; 32(25): 5773–5781.
Google Scholar |
Crossref |
Medline |
ISI24. Mauney, JR, Nguyen, T, Gillen, K, et al. Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3D scaffolds. Biomaterials 2007; 28(35): 5280–5290.
Google Scholar |
Crossref |
Medline |
ISI25. Fukayama, T, Ozai, Y, Shimokawadoko, H, et al. Effect of fibroin sponge coating on in vivo performance of knitted silk small diameter vascular grafts. Organogenesis 2015; 11(3): 137–151.
Google Scholar |
Crossref |
Medline26. Boni, R, Ali, A, Shavandi, A, et al. Current and novel polymeric biomaterials for neural tissue engineering. J Biomed Sci 2018; 25(1): 90.
Google Scholar |
Crossref |
Medline27. Zhao, H, Yang, Y, Yi, H, et al. Biosynthesis of a potentially functional polypeptide derived from silk fibroin. Biomed Mater Eng 2014; 24(6): 2057–2064.
Google Scholar |
Medline28. Li, G, Chen, K, You, D, et al. Laminin-coated electrospun regenerated silk fibroin mats promote neural progenitor cell proliferation, differentiation, and survival in vitro. Front Bioeng Biotechnol 2019; 7: 190.
Google Scholar |
Crossref |
Medline29. Li, Z, Song, L, Huang, X, et al. Tough and VEGF-releasing scaffolds composed of artificial silk fibroin mats and a natural acellular matrix. RSC Adv 2015; 5(22): 16748–16758.
Google Scholar |
Crossref30. Liu, Q, Huang, J, Shao, H, et al. Dual-factor loaded functional silk fibroin scaffolds for peripheral nerve regeneration with the aid of neovascularization. RSC Adv 2016; 6(9): 7683–7691.
Google Scholar |
Crossref |
ISI31. Gloria, A, De Santis, R, Ambrosio, L. Polymer-based composite scaffolds for tissue engineering. J Appl Biomater Biomech 2010; 8(2): 57–67.
Google Scholar |
Abstract |
ISI32. Nguyen, TP, Nguyen, QV, Nguyen, VH, et al. Silk fibroin-based biomaterials for biomedical applications: a review. Polymers (Basel) 2019; 11(12): 1933.
Google Scholar |
Crossref33. Li, H, Liu, H, Heller, S. Pluripotent stem cells from the adult mouse inner ear. Nat Med 2003; 9(10): 1293–1299.
Google Scholar |
Crossref |
Medline |
ISI34. Senn, P, Mina, A, Volkenstein, S, et al. Progenitor cells from the adult human inner ear. Anat Rec (Hoboken) 2020; 303(3): 461–470.
Google Scholar |
Crossref |
Medline35. Liu, Y, Zhang, X, Xia, Y, et al. Magnetic-field-assisted electrospinning of aligned straight and wavy polymeric nanofibers. Adv Mater 2010; 22(22): 2454–2457.
Google Scholar |
Crossref |
Medline36. Niu, Q, Huang, X, Lv, S, et al. Natural polymer-based bioabsorbable conducting wires for implantable bioelectronic devices. J Mater Chem A 2020; 8(47): 25323–25335.
Google Scholar |
Crossref37. Zou, S, Wang, X, Fan, S, et al. Electrospun regenerated Antheraea pernyi silk fibroin scaffolds with improved pore size, mechanical properties and cytocompatibility using mesh collectors. J Mater Chem B 2021; 9(27): 5514–5527.
Google Scholar |
Crossref |
Medline38. Li, Z, Liu, Q, Wang, H, et al. Bladder acellular matrix graft reinforced silk fibroin composite scaffolds loaded VEGF with aligned electrospun fibers in multiple layers. ACS Biomater Sci Eng 2015; 1(4): 238–246.
Google Scholar |
Crossref |
Medline39. Varkey, A, Venugopal, E, Sugumaran, P, et al. Impact of silk fibroin-based scaffold structures on human osteoblast MG63 cell attachment and proliferation. Int J Nanomedicine 2015; 10(Suppl 1): 43–51.
Google Scholar |
Medline40. D'Souza, SE, Ginsberg, MH, Plow, EF. Arginyl-glycyl-aspartic acid (RGD): a cell adhesion motif. Trends Biochem Sci 1991; 16(7): 246–250.
Google Scholar |
Crossref |
Medline41. Kim, NR, Lee, DH, Chung, P-H, et al. Distinct differentiation properties of human dental pulp cells on collagen, gelatin, and chitosan scaffolds. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 108(5): e94–e100.
Google Scholar |
Crossref |
Medline42. Ouji, Y, Ishizaka, S, Nakamura-Uchiyama, F, et al. Induction of inner ear hair cell-like cells from Math1-transfected mouse ES cells. Cell Death Dis 2013; 4: e700.
Google Scholar |
Crossref |
Medline43. Uebersax, L, Merkle, HP, Meinel, L. Insulin-like growth factor I releasing silk fibroin scaffolds induce chondrogenic differentiation of human mesenchymal stem cells. J Control Release 2008; 127(1): 12–21.
Google Scholar |
Crossref |
Medline44. Ding, Z, Cheng, W, Mia, MS, et al. Silk biomaterials for bone tissue engineering. Macromol Biosci 2021; 21(8): e2100153.
Google Scholar |
Crossref |
Medline
留言 (0)