Investigation of an injectable gold nanoparticle extracellular matrix

1. Gallie, DR, Lucas, WJ, Walbot, V. Visualizing mRNA expression in plant protoplasts: factors influencing efficient mRNA uptake and translation. Plant Cell 1989; 1(3): 301–311.
Google Scholar | Medline2. Rana, D, Zreiqat, H, Benkirane-Jessel, N, et al. Development of decellularized scaffolds for stem cell-driven tissue engineering. J Tissue Eng Regen Med 2017; 11(4): 942–965.
Google Scholar | Crossref | Medline3. Brown, BN, Ratner, BD, Goodman, SB, et al. Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials 2012; 33(15): 3792–3802.
Google Scholar | Crossref | Medline | ISI4. Calve, S, Odelberg, SJ, Simon, H-G. A transitional extracellular matrix instructs cell behavior during muscle regeneration. Dev Biol 2010; 344(1): 259–271.
Google Scholar | Crossref | Medline5. Ott, HC, Matthiesen, TS, Goh, S-K, et al. Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nat Med 2008; 14(2): 213–221, http://www.nature.com/nm/journal/v14/n2/suppinfo/nm1684_S1.html.
Google Scholar | Crossref | Medline | ISI6. Valentin, JE, Stewart-Akers, AM, Gilbert, TW, et al. Macrophage participation in the degradation and remodeling of extracellular matrix scaffolds. Tissue Eng A 2009; 15(7): 1687–1694.
Google Scholar | Crossref | Medline7. Vorotnikova, E, McIntosh, D, Dewilde, A, et al. Extracellular matrix-derived products modulate endothelial and progenitor cell migration and proliferation in vitro and stimulate regenerative healing in vivo. Matrix Biol 2010; 29(8): 690–700.
Google Scholar | Crossref | Medline | ISI8. Smith, SE, Snider, CL, Gilley, DR, et al. Homogenized porcine extracellular matrix derived injectable tissue construct with gold nanoparticles for musculoskeletal tissue engineering applications. J Biomater Nanobiotechnol 2017; 8(2): 125–143.
Google Scholar | Crossref9. Saleh, T, Ahmed, E, Yu, L, et al. Conjugating homogenized liver‐extracellular matrix into decellularized hepatic scaffold for liver tissue engineering. J Biomed Mater Res A 2020; 108: 1991–2004.
Google Scholar | Crossref | Medline10. Choi, JS, Yang, H-J, Kim, BS, et al. Human extracellular matrix (ECM) powders for injectable cell delivery and adipose tissue engineering. J Control Release 2009; 139(1): 2–7.
Google Scholar | Crossref | Medline11. Goldring, MB, Goldring, SR. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann N Y Acad Sci 2010; 1192(1): 230–237.
Google Scholar | Crossref | Medline | ISI12. Chadjichristos, C, Ghayor, C, Kypriotou, M, et al. Sp1 and Sp3 transcription factors mediate interleukin-1β down-regulation of human type II collagen gene expression in articular chondrocytes. J Biol Chem 2003; 278(41): 39762–39772.
Google Scholar | Crossref | Medline13. Gouze, J-N, Bordji, K, Gulberti, S, et al. Interleukin-1? down-regulates the expression of glucuronosyltransferase I, a key enzyme priming glycosaminoglycan biosynthesis: Influence of glucosamine on interleukin-1?-mediated effects in rat chondrocytes. Arthritis Rheum 2001; 44(2): 351–360.
Google Scholar | Crossref | Medline14. Kapoor, M, Martel-Pelletier, J, Lajeunesse, D, et al. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol 2010; 7: 33–42. DOI: 10.1038/nrrheum.2010.196.
Google Scholar | Crossref | Medline15. Shakibaei, M, Schulze-Tanzil, G, John, T, et al. Curcumin protects human chondrocytes from IL-1β-induced inhibition of collagen type II and β1-integrin expression and activation of caspase-3: an immunomorphological study. Ann Anat 2005; 187(5–6): 487–497.
Google Scholar | Crossref | Medline16. Stöve, J, Huch, K, Günther, K-P, et al. Interleukin-1β induces different gene expression of stromelysin, aggrecan and tumor-necrosis-factor-stimulated gene 6 in human osteoarthritic chondrocytes in vitro. Pathobiology 2000; 68(3): 144–149.
Google Scholar | Crossref | Medline17. Brown, TD, Johnston, RC, Saltzman, CL, et al. Posttraumatic osteoarthritis: a first estimate of incidence, prevalence, and burden of disease. J Orthop Trauma 2006; 20(10): 739–744. DOI: 10.1097/01.bot.0000246468.80635.ef.
Google Scholar | Crossref | Medline | ISI18. Carbone, A, Rodeo, S. Review of current understanding of post-traumatic osteoarthritis resulting from sports injuries. J Orthop Res 2017; 35(3): 397–405.
Google Scholar | Crossref | Medline19. Kramer, WC, Hendricks, KJ, Wang, J. Pathogenetic mechanisms of posttraumatic osteoarthritis: opportunities for early intervention. Int J Clin Exp Med 2011; 4(4): 285–298.
Google Scholar | Medline | ISI20. Lotz, MK . New developments in osteoarthritis. Posttraumatic osteoarthritis: pathogenesis and pharmacological treatment options. Arthritis Res Ther 2010; 12(3). DOI: 10.1186/ar3046.
Google Scholar | Crossref | Medline21. Onur, TS, Wu, R, Chu, S, et al. Joint instability and cartilage compression in a mouse model of posttraumatic osteoarthritis. J Orthop Res 2014; 32(2): 318–323. DOI: 10.1002/jor.22509.
Google Scholar | Crossref | Medline | ISI22. Schenker, ML, Mauck, RL, Ahn, J, et al. Pathogenesis and prevention of posttraumatic osteoarthritis after intra-articular fracture. J Am Acad Orthop Surg 2014; 22(1): 20–28. DOI: 10.5435/JAAOS-22-01-20.
Google Scholar | Crossref | Medline | ISI23. Holmes, MWA, Bayliss, MT, Muir, H. Hyaluronic acid in human articular cartilage. Age-related changes in content and size. Biochem J 1988; 250(2): 435–441.
Google Scholar | Crossref | Medline | ISI24. Shaharudin, A, Aziz, Z. Effectiveness of hyaluronic acid and its derivatives on chronic wounds: a systematic review. J Wound Care 2016; 25(10): 585–592.
Google Scholar | Crossref | Medline25. Barakat, AS, Ibrahim, NM, Elghobashy, O, et al. Prevention of post-traumatic osteoarthritis after intra-articular knee fractures using hyaluronic acid: a randomized prospective pilot study. Int Orthop 2019; 43(11): 2437–2445.
Google Scholar | Crossref | Medline26. Bharti, AC, Donato, N, Singh, S, et al. Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-κB and IκBα kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood 2003; 101(3): 1053–1062.
Google Scholar | Crossref | Medline | ISI27. Belkacemi, A, Doggui, S, Dao, L, et al. Challenges associated with curcumin therapy in Alzheimer disease. Expert Reviews Molecular Medicine 2011; 13: e34.
Google Scholar | Crossref | Medline28. Hanai, H, Iida, T, Takeuchi, K, et al. Curcumin maintenance therapy for ulcerative colitis: randomized, multicenter, double-blind, placebo-controlled trial. Clin Gastroenterol Hepatol 2006; 4(12): 1502–1506.
Google Scholar | Crossref | Medline29. Singh, S, Khar, A. Biological effects of curcumin and its role in cancer chemoprevention and therapy. Anti-Cancer Agents Med Chem 2006; 6(3): 259–270.
Google Scholar | Crossref | Medline30. Shakibaei, M, John, T, Schulze-Tanzil, G, et al. Suppression of NF-κB activation by curcumin leads to inhibition of expression of cyclo-oxygenase-2 and matrix metalloproteinase-9 in human articular chondrocytes: Implications for the treatment of osteoarthritis. Biochem Pharmacol 2007; 73(9): 1434–1445, DOI: 10.1016/j.bcp.2007.01.005.
Google Scholar | Crossref | Medline31. Cozad, MJ, Bachman, SL, Grant, SA. Assessment of decellularized porcine diaphragm conjugated with gold nanomaterials as a tissue scaffold for wound healing. J Biomed Mater Res A 2011; 99A(3): 426–434.
Google Scholar | Crossref32. Grant, SA, Deeken, CR, Hamilton, SR, et al. A comparative study of the remodeling and integration of a novel AuNP-tissue scaffold and commercial tissue scaffolds in a porcine model. J Biomed Mater Res A 2013; 101(10): 2778–2787.
Google Scholar | Crossref | Medline33. Ionita, P, Spafiu, F, Ghica, C. Dual behavior of gold nanoparticles, as generators and scavengers for free radicals. J Mat Sci 2008; 43(19): 6571–6574.
Google Scholar | Crossref34. Christenson, EM, Anseth, KS, van den Beucken, JJJP, et al. Nanobiomaterial applications in orthopedics. J Orthop Res 2007; 25(1): 11–22.
Google Scholar | Crossref | Medline | ISI35. Grant, SA, Spradling, CS, Grant, DN, et al. Assessment of the biocompatibility and stability of a gold nanoparticle collagen bioscaffold. J Biomed Mater Res A 2014; 102(2): 332–339.
Google Scholar | Crossref | Medline36. Deeken, CR, White, AK, Bachman, SL, et al. Method of preparing a decellularized porcine tendon using tributyl phosphate. J Biomed Mater Res B, Appl Biomater 2011; 96(2): 199–206.
Google Scholar | Crossref | Medline37. Altman, R, Hackel, J, Niazi, F, et al. Efficacy and safety of repeated courses of hyaluronic acid injections for knee osteoarthritis: a systematic review. Semin Arthritis Rheum 2018; 48(2): 168–175.
Google Scholar | Crossref | Medline38. Zhu, S, Zhou, B, Liu, Q, et al. Effect of Longan polysaccharides on proliferation and phenotype maintenance in rabbit articular chondrocytes in vitro. Med Biol Eng Comput 2016; 54(4): 607–617.
Google Scholar | Crossref | Medline39. Shao, HJ, Chen, CS, Lee, YT, et al. The phenotypic responses of human anterior cruciate ligament cells cultured on poly(epsilon-caprolactone) and chitosan. J Biomed Mater Res A 2010; 93(4): 1297–1305.
Google Scholar | Medline40. Tran, KT, Lamb, P, Deng, J-S. Matrikines and matricryptins: Implications for cutaneous cancers and skin repair. J Dermatol Sci 2005; 40(1): 11–20.
Google Scholar | Crossref | Medline | ISI41. Pek, YS, Spector, M, Yannas, IV, et al. Degradation of a collagen-chondroitin-6-sulfate matrix by collagenase and by chondroitinase. Biomaterials 2004; 25(3): 473–482.
Google Scholar | Crossref | Medline42. Charulatha, V, Rajaram, A. Influence of different crosslinking treatments on the physical properties of collagen membranes. Biomaterials 2003; 24(5): 759–767.
Google Scholar | Crossref | Medline | ISI43. Haugh, MG, Jaasma, MJ, O’Brien, FJ. The effect of dehydrothermal treatment on the mechanical and structural properties of collagen-GAG scaffolds. J Biomed Mater Res A 2009; 89A(2): 363–369.
Google Scholar | Crossref44. Lee, CR, Grodzinsky, AJ, Spector, M. The effects of cross-linking of collagen-glycosaminoglycan scaffolds on compressive stiffness, chondrocyte-mediated contraction, proliferation and biosynthesis. Biomaterials 2001; 22(23): 3145–3154.
Google Scholar | Crossref | Medline45. Weadock, KS, Miller, EJ, Bellincampi, LD, et al. Physical crosslinking of collagen fibers: comparison of ultraviolet irradiation and dehydrothermal treatment. J Biomed Mater Res 1995; 29(11): 1373–1379.
Google Scholar | Crossref | Medline46. Yannas, IV, Burke, JF, Huang, C, et al. Correlation ofin vivo collagen degradation rate within vitro measurements. J Biomed Mater Res 1975; 9(6): 623–628.
Google Scholar | Crossref |

留言 (0)

沒有登入
gif