1.
Heinrich, UR, Helling, K. Nitric oxide—a versatile key player in cochlear function and hearing disorders. Nitric Oxide. 2012;27(2):106–16.
Google Scholar |
Crossref2.
Blasits, S, Maune, S, Santos-Sacchi, J. Nitric oxide uncouples gap junctions of supporting Deiters cells from Corti’s organ. Pflugers Arch. 2000;440(5):710–2.
Google Scholar |
Crossref3.
Patel, LS, Mitchell, CK, Dubinsky, WP, O’Brien, J. Regulation of gap junction coupling through the neuronal connexin Cx35 by nitric oxide and cGMP. Cell Commun Adhes. 2006;13(1–2):41–54.
Google Scholar |
Crossref4.
Heinrich, UR, Maurer, J, Gosepath, K, Mann, W. Immunoelectron microscopic localization of nitric oxide synthase III in the guinea pig organ of Corti. Eur Arch Otorhinolaryngol. 1998;255(10):483–90.
Google Scholar |
Crossref5.
Yamane, H, Takayama, M, Konishi, K, Iguchi, H, Shibata, S, Sunami, K, Nakai, Y. Nitric oxide synthase and contractile protein in the rat cochlear lateral wall: possible role of nitric oxide in regulation of strial blood flow. Hear Res. 1997;108(1–2):65–73.
Google Scholar |
Crossref6.
Shi, X, Ren, T, Nuttall, AL. Nitric oxide distribution and production in the guinea pig cochlea. Hear Res. 2001;153(1–2):23–31.
Google Scholar |
Crossref7.
Dai, M, Nuttall, A, Yang, Y, Shi, X. Visualization and contractile activity of cochlear pericytes in the capillaries of the spiral ligament. Hear Res. 2009;254(1–2):100–7.
Google Scholar |
Crossref8.
Schröter, A, Andrabi, SA, Wolf, G, Horn, TF. Nitric oxide applications prior and simultaneous to potentially excitotoxic NMDA-evoked calcium transients: cell death or survival. Brain Res. 2005;1060(1–2):1–15.
Google Scholar |
Crossref9.
Halmos, G, Horváth, T, Polony, G, Fekete, A, Kittel, A, Vizi, ES, van der Laan, BF, Zelles, T, Lendvai, B. The role of N-methyl-D-aspartate receptors and nitric oxidein cochlear dopamine release. Neuroscience. 2008;154(2):796–803.
Google Scholar |
Crossref10.
Gouix, E, Léveillé, F, Nicole, O, Melon, C, Had-Aissouni, L, Buisson, A. Reverse glial glutamate uptake triggers neuronal cell death through extrasynaptic NMDA receptor activation. Mol Cell Neurosci. 2009;40(4):463–73.
Google Scholar |
Crossref11.
Hanson, JB, Russell, PT, Chung, AT, Kaura, CS, Kaura, SH, John, EO, Jung, TT. Effect of round window membrane application of nitric oxide on hearing and nitric oxide concentration in perilymph. Int J Pediatr Otorhinolaryngol. 2003;67(6):585–90.
Google Scholar |
Crossref12.
Gosepath, K, Heinrich, UR, Ecke, U, Maurer, J, Amedee, R, Mann, WJ. Possible roles of nitric oxide in the physiology and pathophysiology of the guinea pig cochlea. Eur Arch Otorhinolaryngol. 2000;257(8):418–24.
Google Scholar |
Crossref13.
Shen, J, Harada, N, Nakazawa, H, Kaneko, T, Izumikawa, M, Yamashita, T. Role of nitric oxide on ATP-induced Ca2+ signaling in outer hair cells of the guinea pig cochlea. Brain Res. 2006;1081(1):101–12.
Google Scholar |
Crossref14.
Yukawa, H, Shen, J, Harada, N, Cho-Tamaoka, H, Yamashita, T. Acute effects of glucocorticoids on ATP-induced Ca2+ mobilization and nitric oxide production in cochlear spiral ganglion neurons. Neuroscience. 2005;130(2):485–96.
Google Scholar |
Crossref15.
Heinrich, UR, Selivanova, O, Feltens, R, Brieger, J, Mann, W. Endothelial nitric oxide synthase upregulation in the guinea pig organ of Corti after acute noise trauma. Brain Res. 2005;1047(1):85–96.
Google Scholar |
Crossref16.
Fridberger, A, Widengren, J, Boutet, de, Monvel, J. Measuring hearing organ vibration patterns with confocal microscopy and optical flow. Biophys J. 2004;86(1 Pt 1):535–43.
Google Scholar |
Crossref17.
Ren, T, He, W, Kemp, D. Reticular lamina and basilar membrane vibrations in living mouse cochleae. Proc Natl Acad Sci USA. 2016;113(35):9910–5.
Google Scholar |
Crossref18.
Leonova, EV, Raphael, Y. Organization of cell junctions and cytoskeleton in the reticular lamina in normal and ototoxically damaged organ of Corti. Hear Res. 1997;113(1–2):14–28.
Google Scholar |
Crossref19.
Heinrich, UR, Schmidtmann, I, Meuser, R, Ernst, BP, Wünsch, D, Siemer, S, Gribko, A, Stauber, RH, Strieth, S. Early alterations of endothelial nitric oxide synthase expression patterns in the guinea pig cochlea after noise exposure. J Histochem Cytochem. 2019;67(11):845–55.
Google Scholar |
SAGE Journals20.
Heinrich, UR, Brieger, J, Selivanova, O, Feltens, R, Eimermacher, A, Schäfer, D, Mann, WJ. COX-2 expression in the guinea pig cochlea is partly altered by moderate sound exposure. Neurosci Lett. 2006;394(2):121–6.
Google Scholar |
Crossref21.
Selivanova, O, Brieger, J, Heinrich, UR, Mann, W. Akt and c-Jun N-terminal kinase are regulated in response to moderate noise exposure in the cochlea of guinea pigs. ORL J Otorhinolaryngol Relat Spec. 2007;69(5):277–82.
Google Scholar |
Crossref22.
Kanders, K, Lorimer, T, Gomez, F, Stoop, R. Frequency sensitivity in mammalian hearing from a fundamental nonlinear physics model of the inner ear. Sci Rep. 2017;7(1):9931.
Google Scholar |
Crossref23.
Heinrich, UR, Maurer, J, Mann, W. Evidence for a possible NOS back-up system in the organ of Corti of the guinea pig. Eur Arch Otorhinolaryngol. 2004;261(3):121–8.
Google Scholar |
Crossref24.
R Core Team . R: A language and environment for statistical computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing; 2019. Available from:
https://www.R-project.org Google Scholar25.
Gulley, RL, Reese, TS. Intercellular junctions in the reticular lamina of the organ of Corti. J Neurocytol. 1976;5(4):479–507.
Google Scholar |
Crossref26.
Furness, DN, Katori, Y, Mahendrasingam, S, Hackney, CM. Differential distribution of beta- and gamma-actin in guinea-pig cochlear sensory and supporting cells. Hear Res. 2005;207(1–2):22–34.
Google Scholar |
Crossref27.
Searles, CD, Ide, L, Davis, ME, Cai, H, Weber, M. Actin cytoskeleton organization and posttranscriptional regulation of endothelial nitric oxide synthase during cell growth. Circ Res. 2004;95(5):488–95.
Google Scholar |
Crossref28.
Mi, Q, Chen, N, Shaifta, Y, Xie, L, Lu, H, Liu, Z, Chen, Q, Hamid, C, Becker, S, Ji, Y, Ferro, A. Activation of endothelial nitric oxide synthase is dependent on its interaction with globular actin in human umbilical vein endothelial cells. J Mol Cell Cardiol. 2011;51(3):419–27.
Google Scholar |
Crossref29.
Su, Y, Edwards-Bennett, S, Bubb, MR, Block, ER. Regulation of endothelial nitric oxide synthase by the actin cytoskeleton. Am J Physiol Cell Physiol. 2003;284(6):C1542–9.
Google Scholar |
Crossref30.
Su, Y, Zharikov, SI, Block, ER. Microtubule-active agents modify nitric oxide production in pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol. 2002;282(6):L1183–9.
Google Scholar |
Crossref31.
Su, Y, Kondrikov, D, Block, ER. Cytoskeletal regulation of nitric oxide synthase. Cell Biochem Biophys. 2005;43(3):439–49.
Google Scholar |
Crossref32.
Molloy, TJ, de Bock, CE, Wang, Y, Murrell, GA. Gene expression changes in SNAP-stimulated and iNOS-transfected tenocytes—expression of extracellular matrix genes and its implications for tendon-healing. J Orthop Res. 2006;24(9):1869–82.
Google Scholar |
Crossref33.
Chang, K, Lee, SJ, Cheong, I, Billiar, TR, Chung, HT, Han, JA, Kwon, YG, Ha, KS, Kim, YM. Nitric oxide suppresses inducible nitric oxide synthase expression by inhibiting post-translational modification of IkappaB. Exp Mol Med. 2004;36(4):311–24.
Google Scholar |
Crossref34.
Chen, JX, Berry, LC, Tanner, M, Chang, M, Myers, RP, Meyrick, B. Nitric oxide donors regulate nitric oxide synthase in bovine pulmonary artery endothelium. J Cell Physiol. 2001;186(1):116–23.
Google Scholar |
Crossref35.
Teng, L, Bennett, E, Cai, C. Preconditioning c-Kit-positive human cardiac stem cells with a nitric oxide donor enhances cell survival through activation of survival signaling pathways. J Biol Chem. 2016;291(18):9733–47.
Google Scholar |
Crossref36.
Hemish, J, Nakaya, N, Mittal, V, Enikolopov, G. Nitric oxide activates diverse signaling pathways to regulate gene expression. J Biol Chem. 2003;278(43):42321–9.
Google Scholar |
Crossref37.
Görbe, A, Varga, ZV, Pálóczi, J, Rungarunlert, S, Klincumhom, N, Pirity, MK, Madonna, R, Eschenhagen, T, Dinnyés, A, Csont, T, Ferdinandy, P. Cytoprotection by the NO-donor SNAP against ischemia/reoxygenation injury in mouse embryonic stem cell-derived cardiomyocytes. Mol Biotechnol. 2014;56(3):258–64.
Google Scholar |
Crossref38.
Gorbe, A, Giricz, Z, Szunyog, A, Csont, T, Burley, DS, Baxter, GF, Ferdinandy, P. Role of cGMP-PKG signaling in the protection of neonatal rat cardiac myocytes subjected to simulated ischemia/reoxygenation. Basic Res Cardiol. 2010;105(5):643–50.
Google Scholar |
Crossref39.
Kanno, S, Lee, PC, Zhang, Y, Ho, C, Griffith, BP, Shears, LL, Billiar, TR. Attenuation of myocardial ischemia/reperfusion injury by superinduction of inducible nitric oxide synthase. Circulation. 2000;101(23):2742–8.
Google Scholar |
Crossref40.
Bell, RM, Maddock, HL, Yellon, DM. The cardioprotective and mitochondrial depolarising properties of exogenous nitric oxide in mouse heart. Cardiovasc Res. 2003;57(2):405–15.
Google Scholar |
Crossref41.
Monastyrskaya, E, Folarin, N, Malyshev, I, Green, C, Andreeva, L. Application of the nitric oxide donor SNAP to cardiomyocytes in culture provides protection against oxidative stress. Nitric Oxide. 2002;7(2):127–31.
Google Scholar |
Crossref42.
Yoo, YM, Jung, EM, Ahn, C, Jeung, EB. Nitric oxide prevents H2O2-induced apoptosis in SK-N-MC human neuroblastoma cells. Int J Biol Sci. 2018;14(14):1974–1984.
Google Scholar |
Crossref
留言 (0)