1.
Chang, L, Chiang, SH, Saltiel, AR. Insulin signaling and the regulation of glucose transport. Mol Med. 2004;10:65-71. doi:
10.2119/2005-00029.Saltiel. Google Scholar |
Crossref |
Medline |
ISI2.
Saltiel, AR, Kahn, CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001;414:799-806. doi:
10.1038/414799a. Google Scholar |
Crossref |
Medline |
ISI3.
De Meyts, P . Insulin and its receptor: structure, function and evolution. Bioessays. 2004;26:1351-1362. doi:
10.1002/bies.20151. Google Scholar |
Crossref |
Medline |
ISI4.
Ward, CW, Menting, JG, Lawrence, MC. The insulin receptor changes conformation in unforeseen ways on ligand binding: sharpening the picture of insulin receptor activation. Bioessays. 2013;35:945-954. doi:
10.1002/bies.201300065. Google Scholar |
Crossref |
Medline5.
Hua, Q. Insulin: a small protein with a long journey. Protein Cell. 2010;1:537-551. doi:
10.1007/s13238-010-0069-z. Google Scholar |
Crossref |
Medline6.
Rosenstock, J, Guerci, B, Hanefeld, M, et al. Prandial options to advance basal insulin glargine therapy: testing lixisenatide plus basal insulin versus insulin glulisine either as basal-plus or basal-bolus in type 2 diabetes: the GetGoal Duo-2 Trial. Diabetes Care. 2016;39:1318-1328. doi:
10.2337/dc16-0014. Google Scholar |
Crossref |
Medline |
ISI7.
Sciacca, L, Vella, V, Frittitta, L, et al. Long-acting insulin analogs and cancer. Nutr Metab Cardiovasc Dis. 2018;28:436-443. doi:
10.1016/j.numecd.2018.02.010. Google Scholar |
Crossref |
Medline8.
Sheldon, B, Russell-Jones, D, Wright, J. Insulin analogues: an example of applied medical science. Diabetes Obes Metab. 2009;11:5-19. doi:
10.1111/j.1463-1326.2008.01015.x. Google Scholar |
Crossref |
Medline |
ISI9.
Lucidi, P, Porcellati, F, Yki-Järvinen, H, et al. Low levels of unmodified insulin glargine in plasma of people with type 2 diabetes requiring high doses of basal insulin. Diabetes Care. 2015;38:e96-e97. doi:
10.2337/dc14-2662. Google Scholar |
Crossref |
Medline10.
Hilgenfeld, R, Seipke, G, Berchtold, H, Owens, DR. The evolution of insulin glargine and its continuing contribution to diabetes care. Drugs. 2014;74:911-927. doi:
10.1007/s40265-014-0226-4. Google Scholar |
Crossref |
Medline11.
Agin, A, Jeandidier, N, Gasser, F, Grucker, D, Sapin, R. Glargine blood biotransformation: in vitro appraisal with human insulin immunoassay. Diabetes Metab. 2007;33:205-212. doi:
10.1016/j.diabet.2006.12.002. Google Scholar |
Crossref |
Medline |
ISI12.
Bolli, GB, Hahn, AD, Schmidt, R, et al. Plasma exposure to insulin glargine and its metabolites M1 and M2 after subcutaneous injection of therapeutic and supratherapeutic doses of glargine in subjects with type 1 diabetes. Diabetes Care. 2012;35:2626-2630. doi:
10.2337/dc12-0270. Google Scholar |
Crossref |
Medline |
ISI13.
Liu, S, Li, Y, Lin, T, Fan, X, Liang, Y, Heemann, U. High dose human insulin and insulin glargine promote T24 bladder cancer cell proliferation via PI3K-independent activation of Akt. Diabetes Res Clin Pract. 2011;91:177-182. doi:
10.1016/j.diabres.2010.11.009. Google Scholar |
Crossref |
Medline14.
Tennagels, N, Werner, U. The metabolic and mitogenic properties of basal insulin analogues. Arch Physiol Biochem. 2013;119:1-14. doi:
10.3109/13813455.2012.754474. Google Scholar |
Crossref |
Medline |
ISI15.
Varewijck, AJ, Janssen, JA. Insulin and its analogues and their affinities for the IGF1 receptor. Endocr Relat Cancer. 2012;19:F63-F75. doi:
10.1530/ERC-12-0026. Google Scholar |
Crossref |
Medline |
ISI16.
Vigneri, R, Squatrito, S, Sciacca, L. Insulin and its analogs: actions via insulin and IGF receptors. Acta Diabetol. 2010;47:271-278. doi:
10.1007/s00592-010-0215-3. Google Scholar |
Crossref |
Medline |
ISI17.
Wu, JW, Azoulay, L, Majdan, A, Boivin, JF, Pollak, M, Suissa, S. Long-term use of long-acting insulin analogs and breast cancer incidence in women with type 2 diabetes. J Clin Oncol. 2017;35:3647-3653. doi:
10.1200/JCO.2017.73.4491. Google Scholar |
Crossref |
Medline18.
Mori, Y, Ko, E, Furrer, R, et al. Effects of insulin and analogues on carcinogen-induced mammary tumours in high-fat-fed rats. Endocr Connect. 2018;7:739-748. doi:
10.1530/EC-17-0358. Google Scholar |
Crossref |
Medline19.
Lemmon, MA, Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell. 2010;141:1117-1134. doi:
10.1016/j.cell.2010.06.011. Google Scholar |
Crossref |
Medline |
ISI20.
De Meyts, P . The insulin receptor: a prototype for dimeric, allosteric membrane receptors? Trends Biochem Sci. 2008;33:376-384. doi:
10.1016/j.tibs.2008.06.003. Google Scholar |
Crossref |
Medline21.
Haeusler, RA, McGraw, TE, Accili, D. Biochemical and cellular properties of insulin receptor signalling. Nat Rev Mol Cell Biol. 2018;19:31-44. doi:
10.1038/nrm.2017.89. Google Scholar |
Crossref |
Medline22.
Lawrence, MC, McKern, NM, Ward, CW. Insulin receptor structure and its implications for the IGF-1 receptor. Curr Opin Struct Biol. 2007;17:699-705. doi:
10.1016/j.sbi.2007.07.007. Google Scholar |
Crossref |
Medline23.
De Meyts, P, Whittaker, J. Structural biology of insulin and IGF1 receptors: implications for drug design. Nat Rev Drug Discov. 2002;1:769-783. doi:
10.1038/nrd917. Google Scholar |
Crossref |
Medline24.
Lipska, KJ. Insulin analogues for type 2 diabetes. JAMA. 2019;321:350-351. doi:
10.1001/jama.2018.21356. Google Scholar |
Crossref |
Medline25.
Waterhouse, A, Bertoni, M, Bienert, S, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46:W296-W303. doi:
10.1093/nar/gky427. Google Scholar |
Crossref |
Medline26.
Uchikawa, E, Choi, E, Shang, G, Yu, H, Bai, XC. Activation mechanism of the insulin receptor revealed by cryo-EM structure of the fully liganded receptor-ligand complex. eLife. 2019;8:e48630. doi:
10.7554/eLife.48630. Google Scholar |
Crossref |
Medline27.
Ratha, BN, Kar, RK, Bednarikova, Z, et al. Molecular details of a salt bridge and its role in insulin fibrillation by NMR and Raman spectroscopic analysis. J Phys Chem B. 2020;124:1125-1136. doi:
10.1021/acs.jpcb.9b10349. Google Scholar |
Crossref |
Medline28.
Zhang, X, Yu, D, Sun, J, et al. Visualization of ligand-bound ectodomain assembly in the full-length human IGF-1 receptor by cryo-EM single-particle analysis. Structure. 2020;28:555-561.e4. doi:
10.1016/j.str.2020.03.007. Google Scholar |
Crossref29.
Berman, HM, Westbrook, J, Feng, Z, et al. The Protein Data Bank. Nucleic Acids Res. 2000;28:235-242. doi:
10.1093/nar/28.1.235. Google Scholar |
Crossref |
Medline |
ISI30.
Benkert, P, Biasini, M, Schwede, T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics. 2011;27:343-350. doi:
10.1093/bioinformatics/btq662. Google Scholar |
Crossref |
Medline |
ISI31.
Vangone, A, Bonvin, AM. Contacts-based prediction of binding affinity in protein-protein complexes. eLife. 2015;4:e07454. doi:
10.7554/eLife.07454. Google Scholar |
Crossref |
Medline32.
Xue, LC, Rodrigues, JP, Kastritis, PL, Bonvin, AM, Vangone, A. PRODIGY: a web server for predicting the binding affinity of protein-protein complexes. Bioinformatics. 2016;32:3676-3678. doi:
10.1093/bioinformatics/btw514. Google Scholar |
Crossref |
Medline33.
Crudden, C, Shibano, T, Song, D, Suleymanova, N, Girnita, A, Girnita, L. Blurring boundaries: receptor tyrosine kinases as functional G protein-coupled receptors. Int Rev Cell Mol Biol. 2018;339:1-40. doi:
10.1016/bs.ircmb.2018.02.006. Google Scholar |
Crossref |
Medline34.
Menting, JG, Whittaker, J, Margetts, MB, et al. How insulin engages its primary binding site on the insulin receptor. Nature. 2013;493:241-245. doi:
10.1038/nature11781. Google Scholar |
Crossref |
Medline35.
Menting, JG, Yang, Y, Chan, SJ, et al. Protective hinge in insulin opens to enable its receptor engagement. Proc Natl Acad Sci USA. 2014;111:E3395-E3404. doi:
10.1073/pnas.1412897111. Google Scholar |
Crossref |
Medline36.
Weis, F, Menting, JG, Margetts, MB, et al. The signalling conformation of the insulin receptor ectodomain. Nat Commun. 2018;9:4420. doi:
10.1038/s41467-018-06826-6. Google Scholar |
Crossref |
Medline37.
Slieker, LJ, Brooke, GS, DiMarchi, RD, et al. Modifications in the B10 and B26-30 regions of the B chain of human insulin alter affinity for the human IGF-I receptor more than for the insulin receptor. Diabetologia. 1997;40:S54-S61. doi:
10.1007/s001250051402. Google Scholar |
Crossref |
Medline38.
Derewenda, U, Derewenda, Z, Dodson, EJ, Dodson, GG, Bing, X, Markussen, J. X-ray analysis of the single chain B29-A1 peptide-linked insulin molecule. A completely inactive analogue. J Mol Biol. 1991;220:425-433. doi:
10.1016/0022-2836(91)90022-x. Google Scholar |
Crossref |
Medline |
ISI39.
Sommerfeld, MR, Müller, G, Tschank, G, et al. In vitro metabolic and mitogenic signaling of insulin glargine and its metabolites. PLoS ONE. 2010;5:e9540. doi:
10.1371/journal.pone.0009540. Google Scholar |
Crossref |
Medline40.
Werner, U, Korn, M, Schmidt, R, Wendrich, TM, Tennagels, N. Metabolic effect and receptor signalling profile of a non-metabolisable insulin glargine analogue. Arch Physiol Biochem. 2014;120:158-165. doi:
10.3109/13813455.2014.950589. Google Scholar |
Crossref |
Medline41.
Jisna, VA, Jayaraj, PB. Protein structure prediction: conventional and deep learning perspectives. Protein J. 2021;40:522-544. doi:
10.1007/s10930-021-10003-y. Google Scholar |
Crossref |
Medline42.
Lam, SD, Das, S, Sillitoe, I, Orengo, C. An overview of comparative modelling and resources dedicated to large-scale modelling of genome sequences. Acta Crystallogr D Struct Biol. 2017;73:628-640. doi:
10.1107/S2059798317008920. Google Scholar |
Crossref |
Medline
留言 (0)