Proteases Regulate Cancer Stem Cell Properties and Remodel Their Microenvironment

1. Rawlings, ND, Barrett, AJ, Thomas, PD, Huang, X, Bateman, A, Finn, RD. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018;46(D1):D624–32. doi:10.1093/nar/gkx1134.
Google Scholar | Crossref2. Yong, VW, Power, C, Forsyth, P, Edwards, DR. Metalloproteinases in biology and pathology of the nervous system. Nat Rev Neurosci. 2001;2(7):502–11. doi:10.1038/35081571.
Google Scholar | Crossref3. Klein, T, Bischoff, R. Physiology and pathophysiology of matrix metalloproteases. Amino Acids. 2011;41(2):271–90. doi:10.1007/s00726-010-0689-x.
Google Scholar | Crossref4. Mittal, R, Patel, AP, Debs, LH, Nguyen, D, Patel, K, Grati, M, Mittal, J, Yan, D, Chapagain, P, Liu, XZ. Intricate functions of matrix metalloproteinases in physiological and pathological conditions. J Cell Physiol. 2016; 231(12):2599–621. doi:10.1002/jcp.25430.
Google Scholar | Crossref5. Edwards, DR, Handsley, MM, Pennington, CJ. The ADAM metalloproteinases. Mol Aspects Med. 2008; 29(5):258–89. doi:10.1016/j.mam.2008.08.001.
Google Scholar | Crossref6. Kelwick, R, Desanlis, I, Wheeler, GN, Edwards, DR. The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family. Genome Biol. 2015; 16(1):113. doi:10.1186/s13059-015-0676-3.
Google Scholar | Crossref | Medline7. Cal, S, López-Otín, C. ADAMTS proteases and cancer. Matrix Biol. 2015;44–6:77–85. doi:10.1016/j.matbio.2015.01.013.
Google Scholar | Crossref8. Apte, SS. ADAMTS proteins: concepts, challenges, and prospects. Methods Mol Biol. 2020;2043:1–12. doi:10.1007/978-1-4939-9698-8_1.
Google Scholar | Crossref | Medline9. Mott, JD, Werb, Z. Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol. 2004; 16(5):558–64. doi:10.1016/j.ceb.2004.07.010.
Google Scholar | Crossref10. Jabłońska-Trypuć, A, Matejczyk, M, Rosochacki, S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J Enzyme Inhib Med Chem. 2016;31(Suppl. 1):177–83. doi:10.3109/14756366.2016.1161620.
Google Scholar | Crossref11. Nagase, H, Visse, R, Murphy, G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 2006;69(3):562–73. doi:10.1016/j.cardiores.2005.12.002.
Google Scholar | Crossref12. Mullooly, M, McGowan, PM, Crown, J, Duffy, MJ. The ADAMs family of proteases as targets for the treatment of cancer. Cancer Biol Ther. 2016;17(8):870–80. doi:10.1080/15384047.2016.1177684.
Google Scholar | Crossref13. Turk, V, Stoka, V, Vasiljeva, O, Renko, M, Sun, T, Turk, B, Turk, D. Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim Biophys Acta. 2012;1824(1):68–88. doi:10.1016/j.bbapap.2011.10.002.
Google Scholar | Crossref | Medline14. Yadati, T, Houben, T, Bitorina, A, Shiri-Sverdlov, R. The ins and outs of cathepsins: physiological function and role in disease management. Cells. 2020;9(7):1679. doi:10.3390/cells9071679.
Google Scholar | Crossref15. Turk, B. Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov. 2006;5(9): 785–99. doi:10.1038/nrd2092.
Google Scholar | Crossref16. López-Otín, C, Overall, CM. Protease degradomics: a new challenge for proteomics. Nat Rev Mol Cell Biol. 2002;3(7):509–19. doi:10.1038/nrm858.
Google Scholar | Crossref17. López-Otín, C, Bond, JS. Proteases: multifunctional enzymes in life and disease. J Biol Chem. 2008;283(45):30433–7. doi:10.1074/jbc.R800035200.
Google Scholar | Crossref18. Quesada, V, Ordóñez, GR, Sánchez, LM, Puente, XS, López-Otín, C. The Degradome database: mammalian proteases and diseases of proteolysis. Nucleic Acids Res. 2009;37(Database issue):D239–43. doi:10.1093/nar/gkn570.
Google Scholar | Crossref19. Turk, B, Turk, D, Turk, V. Protease signalling: the cutting edge. EMBO J. 2012;31(7):1630–43. doi:10.1038/emboj.2012.42.
Google Scholar | Crossref20. Bond, JS. Proteases: history, discovery, and roles in health and disease. J Biol Chem. 2019;294(5):1643–51. doi:10.1074/jbc.TM118.004156.
Google Scholar | Crossref21. Jones, DL, Wagers, AJ. No place like home: anatomy and function of the stem cell niche. Nat Rev Mol Cell Biol. 2008;9(1):11–21. doi:10.1038/nrm2319.
Google Scholar | Crossref | Medline22. Morrison, SJ, Spradling, AC. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell. 2008;132(4):598–611. doi:10.1016/j.cell.2008.01.038.
Google Scholar | Crossref | Medline23. Kessenbrock, K, Wang, CY, Werb, Z. Matrix metalloproteinases in stem cell regulation and cancer. Matrix Biol. 2015;44–6:184–90. doi:10.1016/j.matbio.2015.01.022.
Google Scholar | Crossref24. Tay, J, Levesque, JP, Winkler, IG. Cellular players of hematopoietic stem cell mobilization in the bone marrow niche. Int J Hematol. 2017;105(2):129–40. doi:10.1007/s12185-016-2162-4.
Google Scholar | Crossref25. Man, Y, Yao, X, Yang, T, Wang, Y. Hematopoietic stem cell niche during homeostasis, malignancy, and bone marrow transplantation. Front Cell Dev Biol. 2021;9:621214. doi:10.3389/fcell.2021.621214.
Google Scholar | Crossref26. Saw, S, Weiss, A, Khokha, R, Waterhouse, PD. Metalloproteases: on the watch in the hematopoietic niche. Trends Immunol. 2019;40(11):1053–70. doi:10.1016/j.it.2019.09.006.
Google Scholar | Crossref27. Maurer, A, Klein, G, Staudt, ND. Assessment of proteolytic activities in the bone marrow microenvironment. Methods Mol Biol. 2019;2017:149–63. doi:10.1007/978-1-4939-9574-5_12.
Google Scholar | Crossref28. Staudt, ND, Aicher, WK, Kalbacher, H, Stevanovic, S, Carmona, AK, Bogyo, M, Klein, G. Cathepsin X is secreted by human osteoblasts, digests CXCL-12 and impairs adhesion of hematopoietic stem and progenitor cells to osteoblasts. Haematologica. 2010;95(9):1452–60. doi:10.3324/haematol.2009.018671.
Google Scholar | Crossref29. Luo, M, Li, JF, Yang, Q, Zhang, K, Wang, ZW, Zheng, S, Zhou, JJ. Stem cell quiescence and its clinical relevance. World J Stem Cells. 2020;12(11):1307–26. doi:10.4252/wjsc.v12.i11.1307.
Google Scholar | Crossref30. Steinl, C, Essl, M, Schreiber, TD, Geiger, K, Prokop, L, Stevanović, S, Pötz, O, Abele, H, Wessels, JT, Aicher, WK, Klein, G. Release of matrix metalloproteinase-8 during physiological trafficking and induced mobilization of human hematopoietic stem cells. Stem Cells Dev. 2013;22(9):1307–18. doi:10.1089/scd.2012.0063.
Google Scholar | Crossref31. Jin, F, Zhai, Q, Qiu, L, Meng, H, Zou, D, Wang, Y, Li, Q, Yu, Z, Han, J, Li, Q, Zhou, B. Degradation of BM SDF-1 by MMP-9: the role in G-CSF-induced hematopoietic stem/progenitor cell mobilization. Bone Marrow Transplant. 2008;42(9):581–8. doi:10.1038/bmt.2008.222.
Google Scholar | Crossref32. Theodore, LN, Hagedorn, EJ, Cortes, M, Natsuhara, K, Liu, SY, Perlin, JR, Yang, S, Daily, ML, Zon, LI, North, TE. Distinct roles for matrix metalloproteinases 2 and 9 in embryonic hematopoietic stem cell emergence, migration, and niche colonization. Stem Cell Reports. 2017;8(5):1226–41. doi:10.1016/j.stemcr.2017.03.016.
Google Scholar | Crossref33. Staudt, ND, Maurer, A, Spring, B, Kalbacher, H, Aicher, WK, Klein, G. Processing of CXCL12 by different osteoblast-secreted cathepsins. Stem Cells Dev. 2012;21(11):1924–35. doi:10.1089/scd.2011.0307.
Google Scholar | Crossref34. Kollet, O, Dar, A, Shivtiel, S, Kalinkovich, A, Lapid, K, Sztainberg, Y, Tesio, M, Samstein, RM, Goichberg, P, Spiegel, A, Elson, A, Lapidot, T. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med. 2006;12(6):657–64. doi:10.1038/nm1417.
Google Scholar | Crossref | Medline35. Coussens, LM, Fingleton, B, Matrisian, LM. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science. 2002;295(5564):2387–92. doi:10.1126/science.1067100.
Google Scholar | Crossref36. Lah, TT, Obermajer, N, Alonso, MBD, Kos, J. Cysteine cathepsins and cystatins as cancer biomarkers. In: Edwards, D, Høyer-Hansen, G, Blasi, F, Sloane, BF editors. The cancer degradome: proteases and cancer biology. New York: Springer; 2008. p. 587–625. doi:10.1007/978-0-387-69057-5_29.
Google Scholar | Crossref37. Breznik, B, Mitrović, AT, Lah, T, Kos, J. Cystatins in cancer progression: more than just cathepsin inhibitors. Biochimie. 2019;166:233–50. doi:10.1016/j.biochi.2019.05.002.
Google Scholar | Crossref38. Mason, SD, Joyce, JA. Proteolytic networks in cancer. Trends Cell Biol. 2011;21(4):228–37. doi:10.1016/j.tcb.2010.12.002.
Google Scholar | Crossref39. Vizovisek, M, Ristanovic, D, Menghini, S, Christiansen, MG, Schuerle, S. The tumor proteolytic landscape: a challenging frontier in cancer diagnosis and therapy. Int J Mol Sci. 2021;22(5):2514. doi:10.3390/ijms22052514.
Google Scholar | Crossref40. Lah, TT, Durán Alonso, MB, Van Noorden, CJ. Antiprotease therapy in cancer: hot or not? Expert Opin Biol Ther. 2006;6(3):257–79. doi:10.1517/14712598.6.3.257.
Google Scholar | Crossref41. Rudzińska, M, Parodi, A, Soond, SM, Vinarov, AZ, Korolev, DO, Morozov, AO, Daglioglu, C, Tutar, Y, Zamyatnin, AA The role of cysteine cathepsins in cancer progression and drug resistance. Int J Mol Sci. 2019;20(14):3602. doi:10.3390/ijms20143602.
Google Scholar | Crossref42. Roy, R, Morad, G, Jedinak, A, Moses, MA. Metalloproteinases and their roles in human cancer. Anat Rec (Hoboken). 2020;303(6):1557–72. doi:10.1002/ar.24188.
Google Scholar | Crossref43. López-Otín, C, Matrisian, LM. Emerging roles of proteases in tumour suppression. Nat Rev Cancer. 2007;7(10):800–8. doi:10.1038/nrc2228.
Google Scholar | Crossref44. López-Otín, C, Palavalli, LH, Samuels, Y. Protective roles of matrix metalloproteinases: from mouse models to human cancer. Cell Cycle. 2009;8(22):3657–62. doi:10.4161/cc.8.22.9956.
Google Scholar | Crossref45. Noël, A, Gutiérrez-Fernández, A, Sounni, NE, Behrendt, N, Maquoi, E, Lund, IK, Cal, S, Hoyer-Hansen, G, López-Otín, C. New and paradoxical roles of matrix metalloproteinases in the tumor microenvironment. Front Pharmacol. 2012;3:140. doi:10.3389/fphar.2012.00140.
Google Scholar | Crossref | Medline46. Egeblad, M, Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002;2(3):161–74. doi:10.1038/nrc745.
Google Scholar | Crossref47. Levicar, N, Strojnik, T, Kos, J, Dewey, RA, Pilkington, GJ, Lah, TT. Lysosomal enzymes, cathepsins in brain tumour invasion. J Neurooncol. 2002;58(1):21–32. doi:10.1023/a:1015892911420.
Google Scholar | Crossref48. Filippou, PS, Karagiannis, GS, Musrap, N, Diamandis, EP. Kallikrein-related peptidases (KLKs) and the hallmarks of cancer. Crit Rev Clin Lab Sci. 2016;53(4):277–91. doi:10.3109/10408363.2016.1154643.
Google Scholar | Crossref49. Breznik, B, Motaln, H, Lah Turnšek, T. Proteases and cytokines as mediators of interactions between cancer and stromal cells in tumours. Biol Chem. 2017;398(7):709–19. doi:10.1515/hsz-2016-0283.
Google Scholar | Crossref | Medline50. Kessenbrock, K, Plaks, V, Werb, Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141(1):52–67. doi:10.1016/j.cell.2010.03.015.
Google Scholar | Crossref | Medline51. Turunen, SP, Tatti-Bugaeva, O, Lehti, K. Membrane-type matrix metalloproteases as diverse effectors of cancer progression. Biochim Biophys Acta Mol Cell Res. 2017;1864(11, Pt. A):1974–88. doi:10.1016/j.bbamcr.2017.04.002.
Google Scholar | Crossref52. Quintero-Fabián, S, Arreola, R, Becerril-Villanueva, E, Torres-Romero, JC, Arana-Argáez, V, Lara-Riegos, J, Ramírez-Camacho, MA, Alvarez-Sánchez, ME. Role of matrix metalloproteinases in angiogenesis and cancer. Front Oncol. 2019;9:1370. doi:10.3389/fonc.2019.01370.
Google Scholar | Crossref53. Mochizuki, S, Okada, Y. ADAMs in cancer cell proliferation and progression. Cancer Sci. 20

留言 (0)

沒有登入
gif