In Silico Exploration of Phytoconstituents From Phyllanthus emblica and Aegle marmelos as Potential Therapeutics Against SARS-CoV-2 RdRp

1. Ji, W, Wang, W, Zhao, X, Zai, J, Li, X. Cross-species transmission of the newly identified coronavirus 2019-nCoV. J Med Virol. 2020;92:433-440. doi:10.1002/jmv.25682.
Google Scholar | Crossref | Medline2. Zheng, J. SARS-CoV-2: an emerging coronavirus that causes a global threat. Int J Biol Sci. 2020;16:1678-1685. doi:10.7150/ijbs.45053.
Google Scholar | Crossref | Medline3. Elzupir, AO . Caffeine and caffeine-containing pharmaceuticals as promising inhibitors for 3-chymotrypsin-like protease of SARS-CoV-2 [published online ahead of print October 23, 2020]. J Biomol Struct Dyn. doi:10.1080/07391102.2020.1835732.
Google Scholar | Crossref4. Andersen, KG, Rambaut, A, Lipkin, WI, Holmes, EC, Garry, RF. The proximal origin of SARS-CoV-2. Nat Med. 2020;26:450-452. doi:10.1038/s41591-020-0820-9.
Google Scholar | Crossref | Medline5. Bestle, D, Heindl, MR, Limburg, H, et al. TMPRSS2 and furin are both essential for proteolytic activation and spread of SARS-CoV-2 in human airway cells and provide promising drug targets [published online ahead of print April 15, 2020]. bioRxiv. doi:10.1101/2020.04.15.042085.
Google Scholar | Crossref6. Coutard, B, Valle, C, de Lamballerie, X, Canard, B, Seidah, NG, Decroly, E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res. 2020;176:104742. doi:10.1016/j.antiviral.2020.104742.
Google Scholar | Crossref | Medline7. Hoffmann, M, Kleine-Weber, H, Schroeder, S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:210-271. doi:10.1016/j.cell.2020.02.052.
Google Scholar | Crossref8. Walls, AC, Park, YJ, Tortorici, MA, Wall, A, McGuire, AT, Veesler, D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181:281-292. doi:10.1016/j.cell.2020.02.058.
Google Scholar | Crossref | Medline9. Xia, S, Liu, M, Wang, C, et al. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res. 2020;30:343-355. doi:10.1038/s41422-020-0305-x.
Google Scholar | Crossref | Medline10. Xia, S, Zhu, Y, Liu, M, et al. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cell Mol Immunol. 2020;17:765-767. doi:10.1038/s41423-020-s0374-2.
Google Scholar | Crossref | Medline11. Ahmad, M, Dwivedy, A, Mariadasse, R, et al. Prediction of small molecule inhibitors targeting the severe acute respiratory syndrome coronavirus-2 RNA-dependent RNA polymerase. ACS Omega. 2020;5:18356-18366. doi:10.1021/acsomega.0c02096.
Google Scholar | Crossref | Medline12. Mangar, P, Pradhan, S, Rai, S, Lepcha, K, Ranjan, VK. Comparative analysis based on the spike glycoproteins of SARS-CoV2 isolated from COVID 19 patients of different countries [published online ahead of print April 9, 2020]. Preprints. doi:10.20944/preprints202004.0154.v1.
Google Scholar | Crossref13. Elfiky, AA, Mahdy, SM, Elshemey, WM. Quantitative structure-activity relationship and molecular docking revealed a potency of anti-hepatitis C virus drugs against human corona viruses. J Med Virol. 2017;89:1040-1047. doi:10.1002/jmv.24736.
Google Scholar | Crossref | Medline14. Hasan, A, Paray, BA, Hussain, A, et al. A review on the cleavage priming of the spike protein on coronavirus by angiotensin-converting enzyme-2 and furin. J Biomol Struct Dyn. 2021;39:3025-3033. doi:10.1080/07391102.2020.1754293.
Google Scholar | Crossref | Medline15. Elfiky, AA. Zika viral polymerase inhibition using anti-HCV drugs both in market and under clinical trials. J Med Virol. 2016;88:2044-2051. doi:10.1002/jmv.24678.
Google Scholar | Crossref | Medline16. Elfiky, AA. Zika virus: novel guanosine derivatives revealed strong binding and possible inhibition of the polymerase. Future Virol. 2017;12:721-728. doi:10.2217/fvl-2017-0081.
Google Scholar | Crossref17. Elfiky, AA. Novel guanosine derivatives as anti-HCV NS5b polymerase: a QSAR and molecular docking study. Med Chem. 2019;15:130-137. doi:10.2174/1573406414666181015152511.
Google Scholar | Crossref | Medline18. Elfiky, AA, Elshemey, WM, Gawad, WA, Desoky, OS. Molecular modeling comparison of the performance of NS5b polymerase inhibitor (PSI-7977) on prevalent HCV genotypes. Protein J. 2013;32:75-80. doi:10.1007/s10930-013-9462-9.
Google Scholar | Crossref | Medline19. Elfiky, AA, Elshemey, WM. IDX-184 is a superior HCV direct acting anti-viral drug: a QSAR study. Med Chem Res. 2016;25:1005-1008. doi:10.1007/s00044-016-1533-y.
Google Scholar | Crossref | Medline20. Elfiky, AA, Elshemey, WM. Molecular dynamics simulation revealed binding of nucleotide inhibitors to ZIKV polymerase over 444 nanoseconds. J Med Virol. 2018;90:13-18.
Google Scholar | Crossref | Medline21. Elfiky, AA, Ismail, A. Molecular dynamics and docking reveal the potency of novel GTP derivatives against RNA dependent RNA polymerase of genotype 4a HCV. Life Sci. 2019;238:116958. doi:10.1016/j.lfs.2019.116958.
Google Scholar | Crossref | Medline22. Elfiky, AA, Ismail, AM. Molecular modeling and docking revealed superiority of IDX-184 as HCV polymerase inhibitor. Future Virol. 2017;12:339-347. doi:10.2217/fvl-2017-0027.
Google Scholar | Crossref23. Ganesan, A, Barakat, K. Applications of computer-aided approaches in the development of hepatitis C antiviral agents. Expert Opin Drug Discov. 2017;12:407-425. doi:10.1080/17460441.2017.1291628.
Google Scholar | Crossref | Medline24. Mercorelli, B, Palù, G, Loregian, A. Drug repurposing for viral infectious diseases: how far are we? Trends Microbiol. 2018;26:865-876. doi:10.1016/j.tim.2018.04.004.
Google Scholar | Crossref | Medline25. Lee, G, Piper, DE, Wang, Z, et al. Novel inhibitors of hepatitis C virus RNA-dependent RNA polymerases. J Mol Biol. 2006;357:1051-1057. doi:10.1016/j.jmb.2006.01.032.
Google Scholar | Crossref | Medline | ISI26. Lim, SP, Noble, CG, Seh, CC, et al. Potent allosteric dengue virus NS5 polymerase inhibitors: mechanism of action and resistance profiling. PLoS Pathog. 2016;12:e1005737. doi:10.1371/journal.ppat.1005737.
Google Scholar | Crossref27. Riccio, F, Talapatra, SK, Oxenford, S, Angell, R, Mazzon, M, Kozielski, F. Development and validation of RdRp screen, a crystallization screen for viral RNA-dependent RNA polymerases. Biol Open. 2019;8:bio037663. doi:10.1242/bio.037663.
Google Scholar | Crossref | Medline28. Grum-Tokars, V, Ratia, K, Begaye, A, Baker, SC, Mesecar, AD. Evaluating the 3C-like protease activity of SARS-coronavirus: recommendations for standardized assays for drug discovery. Virus Res. 2008;133:63-73. doi:10.1016/j.virusres.2007.02.015.
Google Scholar | Crossref | Medline29. Marra, MA, Jones, SJ, Astell, CR, et al. The genome sequence of the SARS-associated coronavirus. Science. 2003;300:399-1404. doi:10.1126/science.1085953.
Google Scholar | Crossref30. Thiel, V, Ivanov, KA, Putics, A, et al. Mechanisms and enzymes involved in SARS coronavirus genome expression. J Gen Virol. 2003;84:2305-2315. doi:10.1099/vir.0.19424-0.
Google Scholar | Crossref | Medline | ISI31. Jacome, R, Campillo-Balderas, JA, Ponce-De Leon, S, Becerra, A, Lazcano, A. Sofosbuvir as a potential alternative to treat the SARS-CoV-2 epidemic. Sci Rep. 2020;10:9294. doi:10.21203/rs.3.rs-21002/v1.
Google Scholar | Crossref32. Kirchdoerfer, RN, Ward, AB. Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nat Commun. 2019;10:2343. doi:10.1038/s41467-019-10280-3.
Google Scholar | Crossref | Medline33. Debing, Y, Neyts, J, Delang, L. The future of antivirals: broad-spectrum inhibitors. Curr Opin Infect Dis. 2015;28:596-602. doi:10.1097/QCO.0000000000000212.
Google Scholar | Crossref | Medline34. Li, H, Zhou, Y, Zhang, M, Wang, H, Zhao, Q, Liu, J. Updated approaches against SARS-CoV-2. Antimicrob Agents Chemother. 2020;64:e00483-20. doi:10.1128/AAC.00483-20.
Google Scholar | Crossref35. Siegel, D, Hui, HC, Doerffler, E, et al. Discovery and synthesis of a phosphoramidate prodrug of a pyrrolo[2,1-f][triazin-4-amino] adenine C-nucleoside (GS-5734) for the treatment of Ebola and emerging viruses. J Med Chem. 2017;60:1648-1661. doi:10.1021/acs.jmedchem.6b01594.
Google Scholar | Crossref | Medline36. Agostini, ML, Andres, EL, Sims, AC, et al. Coronavirus susceptibility to the antiviral Remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. mBio. 2018;9:e00221-18. doi:10.1128/mBio.00221-18.
Google Scholar | Crossref | Medline37. Jordan, PC, Liu, C, Raynaud, P, et al. Initiation, extension, and termination of RNA synthesis by a paramyxovirus polymerase. PLoS Pathog. 2018;14:e1006889. doi:10.1371/journal.ppat.1006889.
Google Scholar | Crossref | Medline38. Warren, TK, Jordan, R, Lo, MK, et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature. 2016;531:381-385. doi:10.1038/nature17180.
Google Scholar | Crossref | Medline | ISI39. Tchesnokov, EP, Feng, JY, Porter, DP, Götte, M. Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by Remdesivir. Viruses. 2019;11:326. doi:/10.3390/v11040326.
Google Scholar | Crossref40. US-Food & Drug Administration . Fact Sheet for Health Care Providers: Emergency Use Authorization (EUA) of Remdesivir (GS-5734TM). Silver Spring, MD: US-Food & Drug Administration; 2020.
Google Scholar41. Mani, JS, Johnson, JB, Steel, JC, et al. Natural product-derived phytochemicals as potential agents against coronaviruses: a review. Virus Res. 2020;284:197989. doi:10.1016/j.virusres.2020.197989.
Google Scholar | Crossref | Medline42. Debiaggi, M, Pagani, L, Cereda, PM, Landini, P, Romero, E. Antiviral activity of Chamaecyparis lawsoniana extract: study with herpes simplex virus type 2. Microbiologica. 1988;11:55-61.
Google Scholar | Medline43. Asres, K, Bucar, F. Anti-HIV activity against immunodeficiency virus type 1 (HIV-I) and type II (HIV-II) of compounds isolated from the stem bark of Combretum molle. Ethiop Med J. 2005;43:15-20.
Google Scholar | Medline44. Vermani, K, Garg, S. Herbal medicines for sexually transmitted diseases and AIDS. J Ethnopharmacol. 2002;80:49-66. doi:10.1016/s0378-8741(02)00009-0.
Google Scholar | Crossref | Medline45. Huang, L, Chen, CH. Molecular targets of anti-HIV-1 triterpenes. Curr Drug Targets Infect Disord. 2002;2:33-36. doi:10.2174/1568005024605936.
Google Scholar | Crossref | Medline46. Kwon, DH, Kwon, HY, Kim, HM, et al. Inhibition of hepatitis B virus by an aqueous extract of Agrimonia eupatoria L. Phytother Res. 2005;19:355-358. doi:10.1002/ptr.1689.
Google Scholar | Crossref | Medline47. Kotwal, GJ, Kaczmarek, JN, Leivers, S, et al. Anti-HIV, anti-poxvirus, and anti-SARS activity of a nontoxic, acidic plant extract from the Trifollium species Secomet-V/anti-vac suggests that it contains a novel broad-spectrum antiviral. Ann N Y Acad Sci. 2005;1056:293-302. doi:10.1196/annals.1352.014.
Google Scholar | Crossref |

留言 (0)

沒有登入
gif