Ong OT, Skinner EB, Johnson BJ, Old JM. Mosquito-borne viruses and non-human vertebrates in Australia: a review. Viruses. 2021;13(2):265.
Article PubMed PubMed Central CAS Google Scholar
Imran M, Ye J, Saleemi MK, Shaheen I, Zohaib A, Chen Z, et al. Epidemiological trends of mosquito-borne viral diseases in Pakistan. Anim Dis. 2022;2(1):1–10.
Mbanzulu KM, Mboera LE, Luzolo FK, Wumba R, Misinzo G, Kimera SI. Mosquito-borne viral diseases in the Democratic Republic of the Congo: a review. Parasit Vectors. 2020;13:1–11.
Peinado RDS, Eberle RJ, Pacca CC, Arni RK, Coronado MA. Review of-omics studies on mosquito-borne viruses of the Flavivirus genus. Virus Res. 2022;307:198610.
Article PubMed CAS Google Scholar
Müller R, Reuss F, Kendrovski V, Montag D. Vector-borne diseases. In: Marselle MR, Stadler J, Korn H, Irvine KN, Bonn A, editors. Biodiversity and health in the face of climate change. Cham: Springer; 2019. p. 67–90. https://doi.org/10.1007/978-3-030-02318-8_4.
Yu X, Cheng G. Adaptive evolution as a driving force of the emergence and re-emergence of mosquito-borne viral diseases. Viruses. 2022;14(2):435.
Article PubMed PubMed Central CAS Google Scholar
Weetman D, Kamgang B, Badolo A, Moyes CL, Shearer FM, Coulibaly M, et al. Aedes mosquitoes and Aedes-borne arboviruses in Africa: current and future threats. Int J Environ Res Public Health. 2018;15(2):220.
Article PubMed PubMed Central Google Scholar
Levi LI, Vignuzzi M. Arthritogenic alphaviruses: a worldwide emerging threat? Microorganisms. 2019;7(5):133.
Article PubMed PubMed Central CAS Google Scholar
Qian X, Qi Z. Mosquito-borne flaviviruses and current therapeutic advances. Viruses. 2022;14(6):1226.
Article PubMed PubMed Central CAS Google Scholar
Adesola R, Idris IJIE. Arboviruses, an emerging threat to public health: focus on Nigeria, West Africa. Infect Epidemiol Microbiol. 2022;8(4):379–85.
Laiton-Donato K, Guzmán-Cardozo C, Peláez-Carvajal D, Ajami NJ, Navas M-C, Parra-Henao G, et al. Evolution and emergence of mosquito-borne viruses of medical importance: towards a routine metagenomic surveillance approach. J Trop Ecol. 2023;39: e13.
Yu X, Zhu Y, Xiao X, Wang P, Cheng G. Progress towards understanding the mosquito-borne virus life cycle. Trends Parasitol. 2019;35(12):1009–17.
Caicedo E-Y, Charniga K, Rueda A, Dorigatti I, Mendez Y, Hamlet A, et al. The epidemiology of Mayaro virus in the Americas: a systematic review and key parameter estimates for outbreak modelling. PLoS Negl Trop Dis. 2021;15(6): e0009418.
Article PubMed PubMed Central Google Scholar
Gao X, Liu H, Li X, Fu S, Cao L, Shao N, et al. Changing geographic distribution of Japanese encephalitis virus genotypes, 1935–2017. Vector-Borne Zoonotic Dis. 2019;19(1):35–44.
Malik S, Kishore S, Sundarrajan T, Nargund SL, Ghosh A, Emran TB, et al. Yellow fever virus, a mosquito-borne flavivirus posing high public health concerns and imminent threats to travellers–an update. Int J Surg. 2023;109(2):134–7.
Article PubMed PubMed Central Google Scholar
Habarugira G, Suen WW, Hobson-Peters J, Hall RA, Bielefeldt-Ohmann HJP. West Nile virus: an update on pathobiology, epidemiology, diagnostics, control and “one health” implications. Pathogens. 2020;9(7):589.
Article PubMed PubMed Central CAS Google Scholar
Wilder-Smith A, Hombach J, Ferguson N, Selgelid M, O’Brien K, Vannice K, et al. Deliberations of the Strategic Advisory Group of experts on immunization on the use of CYD-TDV Dengue vaccine. Lancet Infect Dis. 2019;19(1):e31–8.
Article PubMed CAS Google Scholar
Rojas A, Hachey W, Kaur G, Korejwo J, Muhammad R. Enhanced safety surveillance of STAMARIL® yellow fever vaccine provided under the expanded access investigational new drug program in the USA. J Travel Med. 2023;30(7):037.
Van Gessel Y, Klade CS, Putnak R, Formica A, Krasaesub S, Spruth M, et al. Correlation of protection against Japanese encephalitis virus and JE vaccine (IXIARO®) induced neutralizing antibody titers. Vaccine. 2011;29(35):5925–31.
Caragata E, Dong S, Dong Y, Simões M, Tikhe C, Dimopoulos G. Prospects and pitfalls: next-generation tools to control mosquito-transmitted disease. Annu Rev Microbiol. 2020;74:455–75.
Article PubMed CAS Google Scholar
Huang C, Li Y, Feng X, Li D, Li X, Ouyang Q, et al. Distinct gut microbiota composition and functional category in children with cerebral palsy and epilepsy. Front Pediatr. 2019;7:394.
Article PubMed PubMed Central Google Scholar
Ahlers LR, Goodman AG. The immune responses of the animal hosts of West Nile virus: a comparison of insects, birds, and mammals. Front Cell Infect Microbiol. 2018;8:96.
Article PubMed PubMed Central Google Scholar
Gutiérrez-Bugallo G, Piedra LA, Rodriguez M, Bisset JA, Lourenço-de-Oliveira R, Weaver SC, et al. Vector-borne transmission and evolution of Zika virus. Nat Ecol Evolut. 2019;3(4):561–9.
Halbach R, Junglen S, van Rij RP. Mosquito-specific and mosquito-borne viruses: evolution, infection, and host defense. Curr Opin Insect Sci. 2017;22:16–27.
Nguyen NM, Thi Hue Kien D, Tuan TV, Quyen NTH, Tran CN, Vo Thi L, et al. Host and viral features of human Dengue cases shape the population of infected and infectious Aedes aegypti mosquitoes. Proc Natl Acad Sci. 2013;110(22):9072–7.
Article PubMed PubMed Central CAS Google Scholar
Duong V, Lambrechts L, Paul RE, Ly S, Lay RS, Long KC, et al. Asymptomatic humans transmit Dengue virus to mosquitoes. Proc Natl Acad Sci. 2015;112(47):14688–93.
Article PubMed PubMed Central CAS Google Scholar
Wu P, Yu X, Wang P, Cheng G. Arbovirus lifecycle in mosquito: acquisition, propagation and transmission. Expert Rev Mol Med. 2019;21: e1.
Zhu Y, Tong L, Nie K, Wiwatanaratanabutr I, Sun P, Li Q, et al. Host serum iron modulates Dengue virus acquisition by mosquitoes. Nat Microbiol. 2019;4(12):2405–15.
Oliveira JHM, Talyuli OA, Goncalves RL, Paiva-Silva GO, Sorgine MHF, Alvarenga PH, et al. Catalase protects Aedes aegypti from oxidative stress and increases midgut infection prevalence of Dengue but not Zika. PLoS Negl Trop Dis. 2017;11(4): e0005525.
Article PubMed PubMed Central Google Scholar
Wagar Z, Tree M, Mpoy M, Conway M. Low density lipopolyprotein inhibits flavivirus acquisition in Aedes aegypti. Insect Mol Biol. 2017;26(6):734–42.
Article PubMed CAS Google Scholar
Zhu Y, Zhang R, Zhang B, Zhao T, Wang P, Liang G, et al. Blood meal acquisition enhances arbovirus replication in mosquitoes through activation of the GABAergic system. Nat Commun. 2017;8(1):1262.
Article PubMed PubMed Central Google Scholar
Liu J, Liu Y, Nie K, Du S, Qiu J, Pang X, et al. Flavivirus NS1 protein in infected host sera enhances viral acquisition by mosquitoes. Nat Microbiol. 2016;1(9):1–11.
Liu Y, Liu J, Du S, Shan C, Nie K, Zhang R, et al. Evolutionary enhancement of Zika virus infectivity in Aedes aegypti mosquitoes. Nature. 2017;545(7655):482–6.
留言 (0)