Bellingham SA, Guo BB, Coleman BM, Hill AF (2012) Exosomes: vehicles for the transfer of toxic proteins associated with neurodegenerative diseases? Front Physiol 3:124. https://doi.org/10.3389/fphys.2012.00124
Article CAS PubMed PubMed Central Google Scholar
Buckner CM, Calderon TM, Willams DW, Belbin TJ, Berman JW (2011) Characterization of monocyte maturation/differentiation that facilitates their transmigration across the blood–brain barrier and infection by HIV: Implications for NeuroAIDS. Cell Immunol 267(2):109–123. https://doi.org/10.1016/j.cellimm.2010.12.004
Article CAS PubMed Google Scholar
Campbell JH, Hearps AC, Martin GE, Williams KC, Crowe SM (2014) The importance of monocytes and macrophages in HIV pathogenesis, treatment, and cure. AIDS 28(15):2175–2187. https://doi.org/10.1097/QAD.0000000000000408
Article CAS PubMed Google Scholar
Cantres-Rosario Y, Plaud-Valentín M, Gerena Y, Skolasky RL, Wojna V, Meléndez LM (2013) Cathepsin B and cystatin B in HIV-seropositive women are associated with infection and HIV-1-associated neurocognitive disorders. AIDS 27(3):347–356. https://doi.org/10.1097/QAD.0b013e32835b3e47
Article CAS PubMed Google Scholar
Cantres-Rosario YM, Wojna V, Ruiz R, Diaz B, Matos M, Rodriguez-Benitez RJ, Rodriguez E, Skolasky RL, Gerena Y (2022) Soluble insulin receptor levels in plasma, exosomes, and urine and its association with HIV-associated neurocognitive disorders. Front Neurol 13:809956. https://doi.org/10.3389/fneur.2022.809956
Article PubMed PubMed Central Google Scholar
Chan G, Nogalski MT, Yurochko AD (2009) Activation of EGFR on monocytes is required for human cytomegalovirus entry and mediates cellular motility. Proc Natl Acad Sci U S A 106(52):22369–74. https://doi.org/10.1073/pnas.0908787106
Article PubMed PubMed Central Google Scholar
Chen L, Feng Z, Yue H, Bazdar D, Mbonye U, Zender C, Harding CV, Bruggeman L, Karn J, Sieg SF, Wang B, Jin G (2018) Exosomes derived from HIV-1-infected cells promote growth and progression of cancer via HIV TAR RNA. Nat Commun 9(1):4585. https://doi.org/10.1038/s41467-018-07006-2
Chettimada S, Lorenz DR, Misra V, Dillon ST, Reeves RK, Manickam C, Morgello S, Kirk GD, Mehta SH, Gabuzda D (2018) Exosome markers associated with immune activation and oxidative stress in HIV patients on antiretroviral therapy. Sci Rep 8(1):7227. https://doi.org/10.1038/s41598-018-25515-4
Article CAS PubMed PubMed Central Google Scholar
Eggers C, Arendt G, Hahn K, Husstedt IW, Maschke M, Neuen-Jacob E, Obermann M, Rosenkranz T, Schielke E, Straube E (2017) HIV-1-associated neurocognitive disorder: epidemiology, pathogenesis, diagnosis, and treatment. J Neurol 264(8):1715–1727. https://doi.org/10.1007/s00415-017-8503-2
Article PubMed PubMed Central Google Scholar
Fischer-Smith SCAT (2001) CNS invasion by CD14+/CD16+ peripheral blood-derived monocytes in HIV dementia: perivascular accumulation and reservoir of HIV infection. J Neurovirol 7(6):528–541. https://doi.org/10.1080/135502801753248114
Article CAS PubMed Google Scholar
Freeman DW, Noren Hooten N, Eitan E, Green J, Mode NA, Bodogai M, Zhang Y, Lehrmann E, Zonderman AB, Biragyn A, Egan J, Becker KG, Mattson MP, Ejiogu N, Evans MK (2018) Altered extracellular vesicle concentration, cargo, and function in diabetes. Diabetes 67(11):2377–2388. https://doi.org/10.2337/db17-1308
Article CAS PubMed PubMed Central Google Scholar
Gannon P, Khan MZ, Kolson DL (2011) Current understanding of HIV-associated neurocognitive disorders pathogenesis. Curr Opin Neurol 24(3):275–283. https://doi.org/10.1097/WCO.0b013e32834695fb
Article PubMed PubMed Central Google Scholar
Gerena Y, Skolasky RL, Velez JM, Toro-Nieves D, Mayo R, Nath A, Wojna V (2012) Soluble and cell-associated insulin receptor dysfunction correlates with severity of HAND in HIV-infected women. PLoS ONE 7(5):e37358. https://doi.org/10.1371/journal.pone.0037358
Article CAS PubMed PubMed Central Google Scholar
Gerena Y, Menéndez-Delmestre R, Skolasky RL, Hechavarria RM, Pérez S, Hilera C, González C, Nath A, Wojna V (2015) Soluble insulin receptor as a source of insulin resistance and cognitive impairment in HIV-seropositive women. J Neurovirol 21(2):113–119. https://doi.org/10.1007/s13365-014-0310-2
Article CAS PubMed PubMed Central Google Scholar
Heaton RK, Clifford DB, Franklin DR, Woods SP, Ake C, Vaida F, Ellis RJ, Letendre SL, Marcotte TD, Atkinson JH, Rivera-Mindt M, Vigil OR, Taylor MJ, Collier AC, Marra CM, Gelman BB, McArthur JC, Morgello S, Simpson DM, … Grant I (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy. Neurology 75(23):2087–2096. https://doi.org/10.1212/WNL.0b013e318200d727
Kalluri R, LeBleu VS (2020) The biology, function, and biomedical applications of exosomes. Science 367(6478):eaau6977. https://doi.org/10.1126/science.aau6977
Article CAS PubMed PubMed Central Google Scholar
Lamb DJ, Modjtahedi H, Plant NJ, Ferns GAA (2004) EGF mediates monocyte chemotaxis and macrophage proliferation and EGF receptor is expressed in atherosclerotic plaques. Atherosclerosis. 176(1):21–6. https://doi.org/10.1016/j.atherosclerosis.2004.04.012
Article CAS PubMed Google Scholar
Letendre SL, Ellis RJ, Ances BM, McCutchan JA (2010) Neurologic complications of HIV disease and their treatment. Topics in HIV Medicine 18(2):45–55
Li Q, Wang H, Peng H, Huyan T, Cacalano NA (2019) Exosomes: Versatile nano mediators of immune regulation. Cancers 11(10):1557. https://doi.org/10.3390/cancers11101557
Article CAS PubMed PubMed Central Google Scholar
Liner KJ, Ro MJ, Robertson KR (2010) HIV, Antiretroviral Therapies, and the Brain. Curr HIV/AIDS Rep 7(2):85–91. https://doi.org/10.1007/s11904-010-0042-8
McArthur JC, Steiner J, Sacktor N, Nath A (2010) Human immunodeficiency virus-associated neurocognitive disorders: Mind the gap. Ann Neurol 67(6):699–714. https://doi.org/10.1002/ana.22053
Article CAS PubMed Google Scholar
McKelvey KJ, Powell KL, Ashton AW, Morris JM, McCracken SA (2015) Exosomes: mechanisms of uptake. J Circulating Biomarkers 4:7. https://doi.org/10.5772/61186
Mukherjee R, Kanti Barman P, Kumar Thatoi P, Tripathy R, Kumar Das B, Ravindran B (2015) Non-Classical monocytes display inflammatory features: Validation in Sepsis and Systemic Lupus Erythematous. Sci Rep 5(1):13886. https://doi.org/10.1038/srep13886
Article PubMed PubMed Central Google Scholar
Ndhlovu LC, D’Antoni ML, Ananworanich J, Byron MM, Chalermchai T, Sithinamsuwan P, Tipsuk S, Ho E, Slike BM, Schuetz A, Zhang G, Agsalda-Garcia M, Shiramizu B, Shikuma CM, Valcour V (2015) Loss of CCR2 expressing non-classical monocytes are associated with cognitive impairment in antiretroviral therapy-naïve HIV-infected Thais. J Neuroimmunol 288:25–33. https://doi.org/10.1016/j.jneuroim.2015.08.020
Article CAS PubMed PubMed Central Google Scholar
Ożańska A, Szymczak D, Rybka J (2020) Pattern of human monocyte subpopulations in health and disease. Scand J Immunol 92(1):e12883. https://doi.org/10.1111/sji.12883
Patel AA, Zhang Y, Fullerton JN, Boelen L, Rongvaux A, Maini AA, Bigley V, Flavell RA, Gilroy DW, Asquith B, Macallan D, Yona S (2017) The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J Exp Med 214(7):1913–1923. https://doi.org/10.1084/jem.20170355
Article CAS PubMed PubMed Central Google Scholar
Pérez PS, Romaniuk MA, Duette GA, Zhao Z, Huang Y, Martin-Jaular L, Witwer KW, Théry C, Ostrowski M (2019) Extracellular vesicles and chronic inflammation during HIV infection. J Extracellular Vesicles 8(1):1687275. https://doi.org/10.1080/20013078.2019.1687275
Rao VR, Ruiz AP, Prasad VR (2014) Viral and cellular factors underlying neuropathogenesis in HIV associated neurocognitive disorders (HAND). AIDS Res Ther 11(1):13. https://doi.org/10.1186/1742-6405-11-13
Article CAS PubMed PubMed Central Google Scholar
Sacktor N, Skolasky RL, Seaberg E, Munro C, Becker JT, Martin E, Ragin A, Levine A, Miller E (2016) Prevalence of HIV-associated neurocognitive disorders in the Multicenter AIDS Cohort Study. Neurology 86(4):334–340. https://doi.org/10.1212/WNL.0000000000002277
留言 (0)