High glucose potentiates Zika virus induced-astroglial dysfunctions

Almeida LT, Ferraz AC, da Silva Caetano CC et al (2020) Zika virus induces oxidative stress and decreases antioxidant enzyme activities in vitro and in vivo. Virus Res 286:198084. https://doi.org/10.1016/j.virusres.2020.198084

Article  CAS  PubMed  Google Scholar 

Andersen JV, Markussen KH, Jakobsen E et al (2021) Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration. Neuropharmacology 196:108719. https://doi.org/10.1016/j.neuropharm.2021.108719

Article  CAS  PubMed  Google Scholar 

Barbeito-Andrés J, Pezzuto P, Higa LM et al (2020) Congenital Zika syndrome is associated with maternal protein malnutrition. Sci Adv 6:eaaw6284. https://doi.org/10.1126/sciadv.aaw6284

Article  CAS  PubMed  PubMed Central  Google Scholar 

Benarroch EE (2007) Aquaporin-4, homeostasis, and neurologic disease. Neurology 69:2266–2268. https://doi.org/10.1212/01.wnl.0000286385.59836.e2

Article  PubMed  Google Scholar 

Beys-da-Silva WO, Rosa RL, Santi L et al (2019) Zika Virus infection of human mesenchymal stem cells promotes Differential expression of proteins linked to several neurological diseases. Mol Neurobiol 56:4708–4717. https://doi.org/10.1007/s12035-018-1417-x

Article  CAS  PubMed  Google Scholar 

Bobermin LD, Quincozes-Santos A, Guerra MC et al (2012) Resveratrol prevents ammonia toxicity in astroglial cells. PLoS ONE 7:e52164. https://doi.org/10.1371/journal.pone.0052164

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bobermin LD, Quincozes-Santos A, Santos CL et al (2020) Zika virus exposure affects neuron-glia communication in the hippocampal slices of adult rats. Sci Rep 10:21604. https://doi.org/10.1038/s41598-020-78735-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bonvento G, Bolaños JP (2021) Astrocyte-neuron metabolic cooperation shapes brain activity. Cell Metabol 33:1546–1564. https://doi.org/10.1016/j.cmet.2021.07.006

Article  CAS  Google Scholar 

Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. Methods Mol Biol 108:347–352. https://doi.org/10.1385/0-89603-472-0:347

Article  CAS  PubMed  Google Scholar 

Carlberg I, Mannervik B (1985) Glutathione reductase. Methods Enzymol 113:484–490. https://doi.org/10.1016/s0076-6879(85)13062-4

Article  CAS  PubMed  Google Scholar 

Colombo E, Farina C (2016) Astrocytes: key regulators of Neuroinflammation. Trends Immunol 37:608–620. https://doi.org/10.1016/j.it.2016.06.006

Article  CAS  PubMed  Google Scholar 

Dallérac G, Zapata J, Rouach N (2018) Versatile control of synaptic circuits by astrocytes: where, when and how? Nat Rev Neurosci 19:729–743. https://doi.org/10.1038/s41583-018-0080-6

Article  CAS  PubMed  Google Scholar 

Das S, Mukherjee T, Mohanty S et al (2024) Impact of NF-κB signaling and Sirtuin-1 protein for TargetedInflammatory intervention. Curr Pharm Biotechnol 25. https://doi.org/10.2174/0113892010301469240409082212

dos Santos AQ, Nardin P, Funchal C et al (2006) Resveratrol increases glutamate uptake and glutamine synthetase activity in C6 glioma cells. Arch Biochem Biophys 453:161–167. https://doi.org/10.1016/j.abb.2006.06.025

Article  CAS  PubMed  Google Scholar 

Dringen R, Brandmann M, Hohnholt MC, Blumrich E-M (2015) Glutathione-dependent detoxification processes in astrocytes. Neurochem Res 40:2570–2582. https://doi.org/10.1007/s11064-014-1481-1

Article  CAS  PubMed  Google Scholar 

Figueiredo CP, Barros-Aragão FGQ, Neris RLS et al (2019) Zika virus replicates in adult human brain tissue and impairs synapses and memory in mice. Nat Commun 10:3890. https://doi.org/10.1038/s41467-019-11866-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Forrester JV, McMenamin PG, Dando SJ (2018) CNS infection and immune privilege. Nat Rev Neurosci 19:655–671. https://doi.org/10.1038/s41583-018-0070-8

Article  CAS  PubMed  Google Scholar 

Galland F, Seady M, Taday J et al (2019) Astrocyte culture models: Molecular and function characterization of primary culture, immortalized astrocytes and C6 glioma cells. Neurochem Int 131:104538. https://doi.org/10.1016/j.neuint.2019.104538

Article  CAS  PubMed  Google Scholar 

Gilbert-Jaramillo J, Garcez P, James W et al (2019) The potential contribution of impaired brain glucose metabolism to congenital Zika syndrome. J Anat 235:468–480. https://doi.org/10.1111/joa.12959

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gonçalves C-A, Rodrigues L, Bobermin LD et al (2019) Glycolysis-derived compounds from astrocytes that modulate synaptic communication. Front Neurosci 12:1035. https://doi.org/10.3389/fnins.2018.01035

Article  PubMed  PubMed Central  Google Scholar 

Gong T, Liu L, Jiang W, Zhou R (2020) DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol 20:95–112. https://doi.org/10.1038/s41577-019-0215-7

Article  CAS  PubMed  Google Scholar 

Guo Y-Z, Ma Y-M, Zhang X-P et al (2021) Region-specific changes in aquaporin 4 induced by hyperglycemia underlie the differences in cell swelling in the cortex and striatum after cerebral ischemia-reperfusion. Neurosci Lett 754:135885. https://doi.org/10.1016/j.neulet.2021.135885

Article  CAS  PubMed  Google Scholar 

Hayes JD, Dinkova-Kostova AT (2014) The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci 39:199–218. https://doi.org/10.1016/j.tibs.2014.02.002

Article  CAS  PubMed  Google Scholar 

Hekmatimoghaddam S, Dehghani Firoozabadi A, Zare-Khormizi MR, Pourrajab F (2017) Sirt1 and Parp1 as epigenome safeguards and microRNAs as SASP-associated signals, in cellular senescence and aging. Ageing Res Rev 40:120–141. https://doi.org/10.1016/j.arr.2017.10.001

Article  CAS  PubMed  Google Scholar 

Hoshi A, Tsunoda A, Yamamoto T et al (2018) Altered expression of glutamate transporter-1 and water channel protein aquaporin‐4 in human temporal cortex with Alzheimer’s disease. Neuropathology Appl Neurobio 44:628–638. https://doi.org/10.1111/nan.12475

Article  CAS  Google Scholar 

Ikeshima-Kataoka H (2016) Neuroimmunological implications of AQP4 in astrocytes. Int J Mol Sci 17(8):1306. https://doi.org/10.3390/ijms17081306

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lanciotti RS, Kosoy OL, Laven JJ et al (2008) Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg Infect Dis 14:1232–1239. https://doi.org/10.3201/eid1408.080287

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ledur PF, Karmirian K, Pedrosa C da SG, et al (2020) Zika virus infection leads to mitochondrial failure, oxidative stress and DNA damage in human iPSC-derived astrocytes. Sci Rep 10:1218. https://doi.org/10.1038/s41598-020-57914-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee B-C, Lee J (2014) Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance. Biochimica et Biophysica Acta (BBA) -. Mol Basis Disease 1842:446–462. https://doi.org/10.1016/j.bbadis.2013.05.017

Article 

留言 (0)

沒有登入
gif