Short-term exposure of 2.4 GHz electromagnetic radiation on cellular ROS generation and apoptosis in SH-SY5Y cell line and impact on developing chick embryo brain tissue

Eltholth AA (2023) Improved spectrum coexistence in 2.4 GHz ISM band using optimized chaotic frequency hopping for Wi-Fi and Bluetooth signals. Sensors 23(11):5183. https://doi.org/10.3390/s23115183

Article  PubMed  PubMed Central  Google Scholar 

Bisdikian C (2001) An overview of the bluetooth wireless technology. IEEE Commun Magazine doi. https://doi.org/10.1109/35.968817

Article  Google Scholar 

Fragopoulou AF, Miltiadous P, Stamatakis A, Stylianopoulou F, Koussoulakos SL, Margaritis LH (2010) Whole body exposure with GSM 900 MHz affects spatial memory in mice. Pathophysiology 17(3):179–187. https://doi.org/10.1016/j.pathophys.2009.11.002

Article  CAS  PubMed  Google Scholar 

Othman H, Ammari M, Rtibi K, Bensaid N, Sakly M, Abdelmelek H (2017) Postnatal development and behavior effects of in-utero exposure of rats to radiofrequency waves emitted from conventional WiFi devices. Environ Toxicol Pharmacol 52:239–247. https://doi.org/10.1016/j.etap.2017.04.016

Article  CAS  PubMed  Google Scholar 

Gulati S, Kosik P, Durdik M, Skorvaga M, Jakl L, Markova E, Belyaev I (2020) Effects of different mobile phone UMTS signals on DNA, apoptosis and oxidative stress in human lymphocytes. Environ Pollut 267:115632. https://doi.org/10.1016/j.envpol.2020.115632

Article  CAS  PubMed  Google Scholar 

Varghese R, Majumdar A, Kumar G, Shukla A (2018) Rats exposed to 2.45 GHz of non-ionizing radiation exhibit behavioral changes with increased brain expression of apoptotic caspase 3. Pathophysiology 25(1):19–30. https://doi.org/10.1016/j.pathophys.2017.11.001

Article  CAS  PubMed  Google Scholar 

Sharma S, Shukla S (2020) Effect of electromagnetic radiation on redox status, acetylcholine esterase activity and cellular damage contributing to the diminution of the brain working memory in rats. J Chem Neuroanat 106:101784. https://doi.org/10.1016/j.jchemneu.2020.101784

Article  CAS  PubMed  Google Scholar 

Wang X, Michaelis EK (2010) Selective neuronal vulnerability to oxidative stress in the brain. Front Aging Neurosci 2:12. https://doi.org/10.3389/fnagi.2010.00012

Article  PubMed  PubMed Central  Google Scholar 

Oswald MCW, Garnham N, Sweeney ST, Landgraf M (2018) Regulation of neuronal development and function by ROS. FEBS Lett 592(5):679–691. https://doi.org/10.1002/1873-3468.12972

Article  CAS  PubMed  PubMed Central  Google Scholar 

Smaili S, Hirata H, Ureshino R, Monteforte PT, Morales AP, Muler ML, Bincoletto C (2009) Calcium and cell death signaling in neurodegeneration and aging. Anais Da Acad Brasileira De Ciencias 81:467–475. https://doi.org/10.1590/S0001-37652009000300011

Article  CAS  Google Scholar 

Li G, Scull C, Ozcan L, Tabas I (2010) NADPH oxidase links endoplasmic reticulum stress, oxidative stress, and PKR activation to induce apoptosis. J Cell Biol 191(6):1113–1125. https://doi.org/10.1083/jcb.201006121

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kröller-Schön S, Steven S, Kossmann S, Scholz A, Daub S, Oelze M, Daiber A (2014) Molecular mechanisms of the crosstalk between mitochondria and NADPH oxidase through reactive oxygen species—studies in white blood cells and in animal models. Antioxid Redox Signal 20(2):247–266. https://doi.org/10.1089/ars.2012.4953

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mailloux RJ (2020) An update on mitochondrial reactive oxygen species production. Antioxidants 9(6):472. https://doi.org/10.3390/antiox9060472

Article  CAS  PubMed  PubMed Central  Google Scholar 

Daniels WM, Pitout IL, Afullo TJ, Mabandla MV (2009) The effect of electromagnetic radiation in the mobile phone range on the behaviour of the rat. Metab Brain Dis 24:629–641. https://doi.org/10.1007/s11011-009-9164-3

Article  PubMed  Google Scholar 

Gupta SK, Mesharam MK, Krishnamurthy S (2018) Electromagnetic radiation 2450 MHz exposure causes cognition deficit with mitochondrial dysfunction and activation of intrinsic pathway of apoptosis in rats. J Biosci 43:263–276. https://doi.org/10.1007/s12038-018-9744-7

Article  CAS  PubMed  Google Scholar 

Özsobacı NP, Ergün DD, Tunçdemir M, Özçelik D (2020) Protective effects of zinc on 2.45 GHz electromagnetic radiation-induced oxidative stress and apoptosis in HEK293 cells. Biol Trace Elem Res 194:368–378. https://doi.org/10.1007/s12011-019-01811-6

Article  CAS  PubMed  Google Scholar 

Chauhan P, Verma HN, Sisodia R, Kesari KK (2017) Microwave radiation (2.45 GHz)-induced oxidative stress: whole-body exposure effect on histopathology of Wistar rats. Electromagn Biol Med 36(1):20–30. https://doi.org/10.3109/15368378.2016.1144063

Article  CAS  PubMed  Google Scholar 

Söderqvist F, Carlberg M, Hardell L (2009) Use of wireless telephones and serum S100B levels: a descriptive cross-sectional study among healthy Swedish adults aged 18–65 years. Sci Total Environ 407(2):798–805. https://doi.org/10.1016/j.scitotenv.2008.09.051

Article  CAS  PubMed  Google Scholar 

Dasdag S, Akdag MZ, Erdal ME, Erdal N, Ay OI, Ay ME, Yegin K (2015) Effects of 2.4 GHz radiofrequency radiation emitted from Wi-Fi equipment on microRNA expression in brain tissue. Int J Radiat Biol 91(7):555–561. https://doi.org/10.3109/09553002.2015.1028599

Article  CAS  PubMed  Google Scholar 

Dasdag S, Akdag MZ, Bashan M, Kizmaz V, Erdal N, Emin Erdal M, Yegin K (2022) Role of 2.4 GHz radiofrequency radiation emitted from Wi-Fi on some miRNA and faty acids composition in brain. Electromagn Biol Med 41(3):281–292. https://doi.org/10.1080/15368378.2022.2065682

Article  CAS  PubMed  Google Scholar 

Olejárová S, Moravčík R, Herichová I (2022) 2.4 GHz electromagnetic field influences the response of the circadian oscillator in the colorectal cancer cell line DLD1 to miR-34a-mediated regulation. Int J Mol Sci 23(21):13210. https://doi.org/10.3390/ijms232113210

Article  CAS  PubMed  PubMed Central  Google Scholar 

Regalbuto E, Anselmo A, De Sanctis S, Franchini V, Lista F, Benvenuto M, Sgura A (2020) Human fibroblasts in vitro exposed to 2.45 GHz continuous and pulsed wave signals: evaluation of biological effects with a multimethodological approach. Int J Mol Sci 21(19):7069. https://doi.org/10.3390/ijms21197069

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ribatti D (2016) The chick embryo chorioallantoic membrane (CAM). A multifaceted experimental model. Mech Dev 141:70–77. https://doi.org/10.1016/j.mod.2016.05.003

Article  CAS  PubMed  Google Scholar 

Haselgrübler R, Stübl F, Essl K, Iken M, Schroder K, Weghuber ¨J (2017) Gluc-HET, a complementary chick embryo model for the characterization of antidiabetic compounds. PLoS ONE 12(8):e0182788. https://doi.org/10.1371/journal.pone.0182788

Article  PubMed  PubMed Central  Google Scholar 

Siddiqi N, Al Nazwani N (2019) Effects of electromagnetic field on the development of chick embryo: An in vivo study. In Electromagnetic fields and waves. IntechOpen. https://doi.org/10.5772/intechopen.84704

Maadurshni GB, Tharani GK, Udayakumar I, Nagarajan M, Manivannan J (2022) Al2O3 nanoparticles trigger the embryonic hepatotoxic response and potentiate TNF-α-induced apoptosis—modulatory effect of p38 MAPK and JNK inhibitors. Environ Sci Pollut Res 29(36):54250–54263. https://doi.org/10.1007/s11356-022-19243-6

Article  CAS  Google Scholar 

Cui FZ, Tian WM, Hou SP, Xu QY, Lee IS (2006) Hyaluronic acid hydrogel immobilized with RGD peptides for brain tissue engineering. J Mater Science: Mater Med 17:1393–1401. https://doi.org/10.1007/s10856-006-0615-7

Article  CAS  Google Scholar 

Niu J, Li C, Wu H, Feng X, Su Q, Li S, Zhang L, Yew DT, Cho EY, Sha O (2015) Propidium iodide (PI) stains nissl bodies and may serve as a quick marker for total neuronal cell count. Acta Histochem 117(2):182–187. https://doi.org/10.1016/j.acthis.2014.12.001

Article  CAS 

留言 (0)

沒有登入
gif