Eltholth AA (2023) Improved spectrum coexistence in 2.4 GHz ISM band using optimized chaotic frequency hopping for Wi-Fi and Bluetooth signals. Sensors 23(11):5183. https://doi.org/10.3390/s23115183
Article PubMed PubMed Central Google Scholar
Bisdikian C (2001) An overview of the bluetooth wireless technology. IEEE Commun Magazine doi. https://doi.org/10.1109/35.968817
Fragopoulou AF, Miltiadous P, Stamatakis A, Stylianopoulou F, Koussoulakos SL, Margaritis LH (2010) Whole body exposure with GSM 900 MHz affects spatial memory in mice. Pathophysiology 17(3):179–187. https://doi.org/10.1016/j.pathophys.2009.11.002
Article CAS PubMed Google Scholar
Othman H, Ammari M, Rtibi K, Bensaid N, Sakly M, Abdelmelek H (2017) Postnatal development and behavior effects of in-utero exposure of rats to radiofrequency waves emitted from conventional WiFi devices. Environ Toxicol Pharmacol 52:239–247. https://doi.org/10.1016/j.etap.2017.04.016
Article CAS PubMed Google Scholar
Gulati S, Kosik P, Durdik M, Skorvaga M, Jakl L, Markova E, Belyaev I (2020) Effects of different mobile phone UMTS signals on DNA, apoptosis and oxidative stress in human lymphocytes. Environ Pollut 267:115632. https://doi.org/10.1016/j.envpol.2020.115632
Article CAS PubMed Google Scholar
Varghese R, Majumdar A, Kumar G, Shukla A (2018) Rats exposed to 2.45 GHz of non-ionizing radiation exhibit behavioral changes with increased brain expression of apoptotic caspase 3. Pathophysiology 25(1):19–30. https://doi.org/10.1016/j.pathophys.2017.11.001
Article CAS PubMed Google Scholar
Sharma S, Shukla S (2020) Effect of electromagnetic radiation on redox status, acetylcholine esterase activity and cellular damage contributing to the diminution of the brain working memory in rats. J Chem Neuroanat 106:101784. https://doi.org/10.1016/j.jchemneu.2020.101784
Article CAS PubMed Google Scholar
Wang X, Michaelis EK (2010) Selective neuronal vulnerability to oxidative stress in the brain. Front Aging Neurosci 2:12. https://doi.org/10.3389/fnagi.2010.00012
Article PubMed PubMed Central Google Scholar
Oswald MCW, Garnham N, Sweeney ST, Landgraf M (2018) Regulation of neuronal development and function by ROS. FEBS Lett 592(5):679–691. https://doi.org/10.1002/1873-3468.12972
Article CAS PubMed PubMed Central Google Scholar
Smaili S, Hirata H, Ureshino R, Monteforte PT, Morales AP, Muler ML, Bincoletto C (2009) Calcium and cell death signaling in neurodegeneration and aging. Anais Da Acad Brasileira De Ciencias 81:467–475. https://doi.org/10.1590/S0001-37652009000300011
Li G, Scull C, Ozcan L, Tabas I (2010) NADPH oxidase links endoplasmic reticulum stress, oxidative stress, and PKR activation to induce apoptosis. J Cell Biol 191(6):1113–1125. https://doi.org/10.1083/jcb.201006121
Article CAS PubMed PubMed Central Google Scholar
Kröller-Schön S, Steven S, Kossmann S, Scholz A, Daub S, Oelze M, Daiber A (2014) Molecular mechanisms of the crosstalk between mitochondria and NADPH oxidase through reactive oxygen species—studies in white blood cells and in animal models. Antioxid Redox Signal 20(2):247–266. https://doi.org/10.1089/ars.2012.4953
Article CAS PubMed PubMed Central Google Scholar
Mailloux RJ (2020) An update on mitochondrial reactive oxygen species production. Antioxidants 9(6):472. https://doi.org/10.3390/antiox9060472
Article CAS PubMed PubMed Central Google Scholar
Daniels WM, Pitout IL, Afullo TJ, Mabandla MV (2009) The effect of electromagnetic radiation in the mobile phone range on the behaviour of the rat. Metab Brain Dis 24:629–641. https://doi.org/10.1007/s11011-009-9164-3
Gupta SK, Mesharam MK, Krishnamurthy S (2018) Electromagnetic radiation 2450 MHz exposure causes cognition deficit with mitochondrial dysfunction and activation of intrinsic pathway of apoptosis in rats. J Biosci 43:263–276. https://doi.org/10.1007/s12038-018-9744-7
Article CAS PubMed Google Scholar
Özsobacı NP, Ergün DD, Tunçdemir M, Özçelik D (2020) Protective effects of zinc on 2.45 GHz electromagnetic radiation-induced oxidative stress and apoptosis in HEK293 cells. Biol Trace Elem Res 194:368–378. https://doi.org/10.1007/s12011-019-01811-6
Article CAS PubMed Google Scholar
Chauhan P, Verma HN, Sisodia R, Kesari KK (2017) Microwave radiation (2.45 GHz)-induced oxidative stress: whole-body exposure effect on histopathology of Wistar rats. Electromagn Biol Med 36(1):20–30. https://doi.org/10.3109/15368378.2016.1144063
Article CAS PubMed Google Scholar
Söderqvist F, Carlberg M, Hardell L (2009) Use of wireless telephones and serum S100B levels: a descriptive cross-sectional study among healthy Swedish adults aged 18–65 years. Sci Total Environ 407(2):798–805. https://doi.org/10.1016/j.scitotenv.2008.09.051
Article CAS PubMed Google Scholar
Dasdag S, Akdag MZ, Erdal ME, Erdal N, Ay OI, Ay ME, Yegin K (2015) Effects of 2.4 GHz radiofrequency radiation emitted from Wi-Fi equipment on microRNA expression in brain tissue. Int J Radiat Biol 91(7):555–561. https://doi.org/10.3109/09553002.2015.1028599
Article CAS PubMed Google Scholar
Dasdag S, Akdag MZ, Bashan M, Kizmaz V, Erdal N, Emin Erdal M, Yegin K (2022) Role of 2.4 GHz radiofrequency radiation emitted from Wi-Fi on some miRNA and faty acids composition in brain. Electromagn Biol Med 41(3):281–292. https://doi.org/10.1080/15368378.2022.2065682
Article CAS PubMed Google Scholar
Olejárová S, Moravčík R, Herichová I (2022) 2.4 GHz electromagnetic field influences the response of the circadian oscillator in the colorectal cancer cell line DLD1 to miR-34a-mediated regulation. Int J Mol Sci 23(21):13210. https://doi.org/10.3390/ijms232113210
Article CAS PubMed PubMed Central Google Scholar
Regalbuto E, Anselmo A, De Sanctis S, Franchini V, Lista F, Benvenuto M, Sgura A (2020) Human fibroblasts in vitro exposed to 2.45 GHz continuous and pulsed wave signals: evaluation of biological effects with a multimethodological approach. Int J Mol Sci 21(19):7069. https://doi.org/10.3390/ijms21197069
Article CAS PubMed PubMed Central Google Scholar
Ribatti D (2016) The chick embryo chorioallantoic membrane (CAM). A multifaceted experimental model. Mech Dev 141:70–77. https://doi.org/10.1016/j.mod.2016.05.003
Article CAS PubMed Google Scholar
Haselgrübler R, Stübl F, Essl K, Iken M, Schroder K, Weghuber ¨J (2017) Gluc-HET, a complementary chick embryo model for the characterization of antidiabetic compounds. PLoS ONE 12(8):e0182788. https://doi.org/10.1371/journal.pone.0182788
Article PubMed PubMed Central Google Scholar
Siddiqi N, Al Nazwani N (2019) Effects of electromagnetic field on the development of chick embryo: An in vivo study. In Electromagnetic fields and waves. IntechOpen. https://doi.org/10.5772/intechopen.84704
Maadurshni GB, Tharani GK, Udayakumar I, Nagarajan M, Manivannan J (2022) Al2O3 nanoparticles trigger the embryonic hepatotoxic response and potentiate TNF-α-induced apoptosis—modulatory effect of p38 MAPK and JNK inhibitors. Environ Sci Pollut Res 29(36):54250–54263. https://doi.org/10.1007/s11356-022-19243-6
Cui FZ, Tian WM, Hou SP, Xu QY, Lee IS (2006) Hyaluronic acid hydrogel immobilized with RGD peptides for brain tissue engineering. J Mater Science: Mater Med 17:1393–1401. https://doi.org/10.1007/s10856-006-0615-7
Niu J, Li C, Wu H, Feng X, Su Q, Li S, Zhang L, Yew DT, Cho EY, Sha O (2015) Propidium iodide (PI) stains nissl bodies and may serve as a quick marker for total neuronal cell count. Acta Histochem 117(2):182–187. https://doi.org/10.1016/j.acthis.2014.12.001
留言 (0)