Ali K, Morris H (2015) Parkinson’s disease: chameleons and mimics. Pract Neurol 15:14–25. https://doi.org/10.1136/practneurol-2014-000849
Bao X, He Y, Huang L, Li H, Li Q, Huang Y (2024) Sinomenine exerts a neuroprotective effect on PD mouse model through inhibiting PI3K/AKT/mTOR pathway to enhance autophagy. Int J Neurosci 134:301–309. https://doi.org/10.1080/00207454.2022.2100780
Article CAS PubMed Google Scholar
Beitz JM (2014) Parkinson’s disease: a review. Front Biosci (Schol Ed) 6:65–74. https://doi.org/10.2741/s415
Biedler JL, Roffler-Tarlov S, Schachner M, Freedman LS (1978) Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Res 38:3751–3757
Chen M, Wang X, Bao S, Wang D, Zhao J, Wang Q, Liu C, Zhao H, Zhang C (2024) Orchestrating AMPK/mTOR signaling to initiate melittin-induced mitophagy: a neuroprotective strategy against Parkinson’s disease. Int J Biol Macromol 281:136119. https://doi.org/10.1016/j.ijbiomac.2024.136119
Article CAS PubMed Google Scholar
Chidambaram S, Bhat A, Ray B, Sugumar M, Muthukumar S, Manivasagam T, Justin Thenmozhi A, Essa M, Guillemin G, Sakharkar M (2020) Cocoa beans improve mitochondrial biogenesis via PPARγ/PGC1α dependent signalling pathway in MPP intoxicated human neuroblastoma cells (SH-SY5Y). Nutr Neurosci 23:471–480. https://doi.org/10.1080/1028415x.2018.1521088
Article CAS PubMed Google Scholar
Dias V, Junn E, Mouradian MM (2013) The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis 3:461–491. https://doi.org/10.3233/JPD-130230
Article CAS PubMed PubMed Central Google Scholar
Farid HA, Sayed RH, El-Shamarka ME, Abdel-Salam OME, El Sayed NS (2024) PI3K/AKT signaling activation by roflumilast ameliorates rotenone-induced Parkinson’s disease in rats. Inflammopharmacology 32:1421–1437. https://doi.org/10.1007/s10787-023-01305-x
Article CAS PubMed Google Scholar
Fu MH, Wu CW, Lee YC, Hung CY, Chen IC, Wu KLH (2018) Nrf2 activation attenuates the early suppression of mitochondrial respiration due to the alpha-synuclein overexpression. Biomed J 41:169–183. https://doi.org/10.1016/j.bj.2018.02.005
Article PubMed PubMed Central Google Scholar
Huang M, Bargues-Carot A, Riaz Z, Wickham H, Zenitsky G, Jin H, Anantharam V, Kanthasamy A, Kanthasamy A (2022) Impact of environmental risk factors on mitochondrial dysfunction, neuroinflammation, protein misfolding, and oxidative stress in the etiopathogenesis of Parkinson’s disease. Int J Mol Sci 23. https://doi.org/10.3390/ijms231810808
Jazwa A, Rojo A, Innamorato N, Hesse M, Fernández-Ruiz J, Cuadrado A (2011) Pharmacological targeting of the transcription factor Nrf2 at the basal ganglia provides disease modifying therapy for experimental parkinsonism. Antioxid Redox Signal 14:2347–2360. https://doi.org/10.1089/ars.2010.3731
Article CAS PubMed Google Scholar
Ji Y, Wang D, Zhang B, Lu H (2019) Bergenin ameliorates MPTP-Induced Parkinson’s disease by activating PI3K/Akt signaling pathway. J Alzheimers Dis 72:823–833. https://doi.org/10.3233/JAD-190870
Article CAS PubMed Google Scholar
Jin X, Dong W, Chang K, Yan Y (2024) Research on the signaling pathways related to the intervention of traditional Chinese medicine in Parkinson’s disease:a literature review. J Ethnopharmacol 326:117850. https://doi.org/10.1016/j.jep.2024.117850
Article CAS PubMed Google Scholar
Lan AP, Chen J, Zhao Y, Chai Z, Hu Y (2017) mTOR signaling in Parkinson’s disease. Neuromolecular Med 19:1–10. https://doi.org/10.1007/s12017-016-8417-7
Article CAS PubMed Google Scholar
Langston JW, Irwin I, Langston EB, Forno LS (1984) 1-Methyl-4-phenylpyridinium ion (MPP+): identification of a metabolite of MPTP, a toxin selective to the substantia nigra. Neurosci Lett 48:87–92. https://doi.org/10.1016/0304-3940(84)90293-3
Article CAS PubMed Google Scholar
Liu L, Wang J, Wang H (2020) Hydrogen sulfide alleviates oxidative stress injury and reduces apoptosis induced by MPP in Parkinson’s disease cell model. Mol Cell Biochem 472:231–240. https://doi.org/10.1007/s11010-020-03801-y
Article CAS PubMed Google Scholar
Liu L, Jiang L, Zhang J, Ma Y, Wan M, Hu X, Yang L (2024) Imperatorin inhibits oxidative stress injury and neuroinflammation via the PI3K/AKT signaling pathway in the MPTP-induced Parkinson’s disease mouse. NeuroReport 35:175–184. https://doi.org/10.1097/WNR.0000000000001997
Article CAS PubMed Google Scholar
Loschen G, Azzi A, Richter C, Flohé L (1974) Superoxide radicals as precursors of mitochondrial hydrogen peroxide. FEBS Lett 42:68–72. https://doi.org/10.1016/0014-5793(74)80281-4
Article CAS PubMed Google Scholar
Lu S, Wei X, Zhang H, Chen Z, Li J, Xu X, Xie Q, Chen L, Ye F, Phama H, Jiang L, Huang T, Wei J, Huang R (2021) Protective effect of 2-dodecyl-6-methoxycyclohexa-2, 5-diene-1, 4-dione, isolated from Averrhoa carambola L., against Aβ1-42-induced apoptosis in SH-SY5Y cells by reversing Bcl-2/Bax ratio. Psychopharmacology 238:193–200. https://doi.org/10.1007/s00213-020-05668-9
Article CAS PubMed Google Scholar
Luan F, Peng L, Lei Z, Jia X, Zou J, Yang Y, He X, Zeng N (2021) Traditional uses, phytochemical constituents and pharmacological properties of Averrhoa carambola L: a review. Front Pharmacol 12. https://doi.org/10.3389/fphar.2021.699899
Nagatsu T, Nakashima A, Ichinose H, Kobayashi K (2019) Human tyrosine hydroxylase in Parkinson’s disease and in related disorders. J Neural Transmission (Vienna Austria: 1996) 126:397–409. https://doi.org/10.1007/s00702-018-1903-3
Schmidlin C, Dodson M, Madhavan L, Zhang D (2019) Redox regulation by NRF2 in aging and disease. Free Radic Biol Med 134:702–707. https://doi.org/10.1016/j.freeradbiomed.2019.01.016
Article CAS PubMed PubMed Central Google Scholar
Shi J, Wang Y, Liang T, Wang X, Xie J, Huang R, Xu X, Wei X (2024) DMDD, isolated from Averrhoa carambola L., ameliorates diabetic nephropathy by regulating endoplasmic reticulum stress-autophagy crosstalk. Chin Med 19:125. https://doi.org/10.1186/s13020-024-00993-z
Article CAS PubMed PubMed Central Google Scholar
Simon-Sanchez J, Schulte C, Bras JM, Sharma M, Gibbs JR, Berg D, Paisan-Ruiz C, Lichtner P, Scholz SW, Hernandez DG, Kruger R, Federoff M, Klein C, Goate A, Perlmutter J, Bonin M, Nalls MA, Illig T, Gieger C, Houlden H, Steffens M, Okun MS, Racette BA, Cookson MR, Foote KD, Fernandez HH, Traynor BJ, Schreiber S, Arepalli S, Zonozi R, Gwinn K, van der Brug M, Lopez G, Chanock SJ, Schatzkin A, Park Y, Hollenbeck A, Gao J, Huang X, Wood NW, Lorenz D, Deuschl G, Chen H, Riess O, Hardy JA, Singleton AB, Gasser T (2009) Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet 41:1308–1312. https://doi.org/10.1038/ng.487
Article CAS PubMed PubMed Central Google Scholar
Subramaniam SR, Chesselet MF (2013) Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog Neurobiol 106–107:17–32. https://doi.org/10.1016/j.pneurobio.2013.04.004
Article CAS PubMed Google Scholar
Valko M, Leibfritz D, Moncol J, Cronin M, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84. https://doi.org/10.1016/j.biocel.2006.07.001
Article CAS PubMed Google Scholar
Wei X, Xu X, Chen Z, Liang T, Wen Q, Qin N, Huang W, Huang X, Li Y, Li J, He J, Wei J, Huang R (2018) Protective effects of 2-Dodecyl-6-Methoxycyclohexa-2,5 -Diene-1,4-Dione isolated from Averrhoa Carambola L. (Oxalidaceae) roots on Neuron apoptosis and memory deficits in Alzheimer’s Disease. Cell Physiol Biochemistry: Int J Experimental Cell Physiol Biochem Pharmacol 49:1064–1073. https://doi.org/10.1159/000493289
Xiao B, Kuruvilla J, Tan EK (2022) Mitophagy and reactive oxygen species interplay in Parkinson’s disease. NPJ Parkinsons Dis 8:135. https://doi.org/10.1038/s41531-022-00402-y
Article PubMed PubMed Central Google Scholar
Yao Z, Li J, Bian L, Li Q, Wang X, Yang X, Wei X, Wan G, Wang Y, Shi J, Guo J (2022) Nootkatone alleviates rotenone-induced Parkinson’s disease symptoms through activation of the PI3K/Akt signaling pathway. Phytother Res 36:4183–4200. https://doi.org/10.1002/ptr.7552
留言 (0)